Poetry Generation for Indonesian Pantun Using SeqGAN and GPT-2

Emmanuella Anggi Siallagan, Ika Alfina
{"title":"Poetry Generation for Indonesian Pantun Using SeqGAN and GPT-2","authors":"Emmanuella Anggi Siallagan, Ika Alfina","doi":"10.21609/jiki.v16i1.1113","DOIUrl":null,"url":null,"abstract":"Pantun is a traditional Malay poem consisting of four lines: two lines of deliverance and two lines of messages. Each ending-line word in pantun forms an ABAB rhyme pattern. In this work, we automatically generated Indonesian pantun by applying two existing generative models: Sequential GAN (SeqGAN) and Generative Pre-trained Transformer 2 (GPT-2). We also created a 13K Indonesian pantun dataset by collecting pantun from various sources. We evaluated how well each model produced pantun by its formedness. Measured by two aspects: structure and rhyme. GPT-2 performs better with a margin of 27.57% than SeqGAN in forming the structure and 22.79% better in making rhyming patterns.","PeriodicalId":31392,"journal":{"name":"Jurnal Ilmu Komputer dan Informasi","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmu Komputer dan Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21609/jiki.v16i1.1113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pantun is a traditional Malay poem consisting of four lines: two lines of deliverance and two lines of messages. Each ending-line word in pantun forms an ABAB rhyme pattern. In this work, we automatically generated Indonesian pantun by applying two existing generative models: Sequential GAN (SeqGAN) and Generative Pre-trained Transformer 2 (GPT-2). We also created a 13K Indonesian pantun dataset by collecting pantun from various sources. We evaluated how well each model produced pantun by its formedness. Measured by two aspects: structure and rhyme. GPT-2 performs better with a margin of 27.57% than SeqGAN in forming the structure and 22.79% better in making rhyming patterns.
基于SeqGAN和GPT-2的印尼语潘顿语诗歌生成
潘敦是一首传统的马来诗,由四行组成:两行解脱和两行信息。盘曲中的每一个词尾都形成一个ABAB押韵模式。在这项工作中,我们通过应用两种现有的生成模型:顺序GAN (SeqGAN)和生成预训练Transformer 2 (GPT-2)自动生成印度尼西亚盘屯。我们还通过从各种来源收集盘顿,创建了一个13K的印度尼西亚盘顿数据集。我们通过其成形性来评估每个模型产生盘屯的效果。从结构和韵脚两个方面来衡量。GPT-2在形成结构方面比SeqGAN好27.57%,在形成押韵模式方面比SeqGAN好22.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信