Yue Niu, Lihong Duan, Jingxin Zhang, Jiong Huang, Yueyang Zhai, W. Quan
{"title":"Suppression of ambient temperature-caused drift in a laser power stabilization system with a liquid crystal variable retarder in atomic gyroscopes.","authors":"Yue Niu, Lihong Duan, Jingxin Zhang, Jiong Huang, Yueyang Zhai, W. Quan","doi":"10.1063/5.0049994","DOIUrl":null,"url":null,"abstract":"Laser power stabilization systems with liquid crystal variable retarders have been employed in miniaturized atomic gyroscopes for the merits of low power consumption and easy integration. However, the long-term power drift of the system output with ambient temperature significantly decreases the long-term performance of atomic gyroscopes. Here, we demonstrated a method of dynamic closed-loop control based on the combination of optical power drift and ambient temperature modeling. For a continuous 45 min operation within an ambient temperature variation range of 23.7-25.3 °C, the relative Allan deviation of the output optical power was decreased by one order of magnitude from 2.29 × 10-4 to 3.35 × 10-5 after 100 s averaging time. The long-term stability of the system was significantly improved. In addition, the scheme requires no additional thermal control device, preventing the introduction of extra electromagnetic interference, which is desirable in a miniaturized atomic gyroscope.","PeriodicalId":54761,"journal":{"name":"Journal of the Optical Society of America and Review of Scientific Instruments","volume":"36 1","pages":"043002"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America and Review of Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0049994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Laser power stabilization systems with liquid crystal variable retarders have been employed in miniaturized atomic gyroscopes for the merits of low power consumption and easy integration. However, the long-term power drift of the system output with ambient temperature significantly decreases the long-term performance of atomic gyroscopes. Here, we demonstrated a method of dynamic closed-loop control based on the combination of optical power drift and ambient temperature modeling. For a continuous 45 min operation within an ambient temperature variation range of 23.7-25.3 °C, the relative Allan deviation of the output optical power was decreased by one order of magnitude from 2.29 × 10-4 to 3.35 × 10-5 after 100 s averaging time. The long-term stability of the system was significantly improved. In addition, the scheme requires no additional thermal control device, preventing the introduction of extra electromagnetic interference, which is desirable in a miniaturized atomic gyroscope.