Simulation of the coal mine ventilation with account for gob areas

IF 0.3 Q4 MECHANICS
G. A. Kolegov, A. Krainov
{"title":"Simulation of the coal mine ventilation with account for gob areas","authors":"G. A. Kolegov, A. Krainov","doi":"10.17223/19988621/79/7","DOIUrl":null,"url":null,"abstract":"Mine ventilation network models are widely used in underground coal mining in Russia. The models cover a variety of practical problems ranging from simple air distribution in active mine workings to changes in the static air pressure gradient associated with complex technological or hazardous processes occurring in mines. Isolated gob areas are integral parts of ventilation networks in coal mines. The most commonly used underground coal extraction technology in Russia is the longwall mining. A gob forms when a coal seam is extracted, and the upper layers of the rock cave in. Gobs are isolated from active mine entries with seals, but there is always air leakages from active faces inducing the air circulation in isolated areas. Gobs join different coal seams and often become the sources of underground fires. Therefore, the inclusion of gobs in mine ventilation network models would help contain accidents and eliminate the caused damage. The study uses the method of representative elementary volumes to incorporate a porous medium into mine ventilation network models. Quadratic resistances are assigned to the edges of the model, where Kirchhoffs laws are valid. The aerodynamic resistances of the gob edges are calculated using the Ergun equation. The proposed method has been used to evaluate pressure gradients in the gob area of the Raspadskaya mine. Several scenarios of the aerodynamic resistance variation in the active mine workings surrounding the gob area, such as partial flooding and drilling of boreholes from the surface, have been simulated, and the corresponding changes in pressure gradients have been analyzed.","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/79/7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mine ventilation network models are widely used in underground coal mining in Russia. The models cover a variety of practical problems ranging from simple air distribution in active mine workings to changes in the static air pressure gradient associated with complex technological or hazardous processes occurring in mines. Isolated gob areas are integral parts of ventilation networks in coal mines. The most commonly used underground coal extraction technology in Russia is the longwall mining. A gob forms when a coal seam is extracted, and the upper layers of the rock cave in. Gobs are isolated from active mine entries with seals, but there is always air leakages from active faces inducing the air circulation in isolated areas. Gobs join different coal seams and often become the sources of underground fires. Therefore, the inclusion of gobs in mine ventilation network models would help contain accidents and eliminate the caused damage. The study uses the method of representative elementary volumes to incorporate a porous medium into mine ventilation network models. Quadratic resistances are assigned to the edges of the model, where Kirchhoffs laws are valid. The aerodynamic resistances of the gob edges are calculated using the Ergun equation. The proposed method has been used to evaluate pressure gradients in the gob area of the Raspadskaya mine. Several scenarios of the aerodynamic resistance variation in the active mine workings surrounding the gob area, such as partial flooding and drilling of boreholes from the surface, have been simulated, and the corresponding changes in pressure gradients have been analyzed.
考虑采空区的煤矿通风模拟
矿井通风网络模型在俄罗斯煤矿井下开采中得到了广泛应用。这些模型涵盖了各种实际问题,从矿山活动作业中的简单空气分布到与矿山中发生的复杂技术或危险过程相关的静态空气压力梯度的变化。孤立空区是煤矿通风网络的重要组成部分。俄罗斯最常用的地下采煤技术是长壁开采。当煤层被开采时,采空区就形成了,上层岩石塌陷。采空区与活动巷道采用密封隔离,但活动工作面总有漏风,导致隔离区空气循环。采空区连接不同的煤层,经常成为地下火灾的来源。因此,将采空区纳入矿井通风网络模型有助于控制事故,消除造成的损失。采用代表性初等体积法将多孔介质纳入矿井通风网络模型。二次电阻被分配到模型的边缘,其中基尔霍夫定律是有效的。利用Ergun方程计算了采空区边缘的气动阻力。该方法已应用于拉斯帕德斯卡亚矿采空区压力梯度评价。模拟了采空区周围矿井活动作业中局部注水、地表钻孔等几种空气动力阻力变化情况,分析了相应的压力梯度变化情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信