{"title":"Generalized Tonnetze and Zeitnetze, and the topology of music concepts","authors":"Jason Yust","doi":"10.1080/17459737.2020.1725667","DOIUrl":null,"url":null,"abstract":"The music-theoretic idea of a Tonnetz can be generalized at different levels: as a network of chords relating by maximal intersection, a simplicial complex in which vertices represent notes and simplices represent chords, and as a triangulation of a manifold or other geometrical space. The geometrical construct is of particular interest, in that allows us to represent inherently topological aspects to important musical concepts. Two kinds of music-theoretical geometry have been proposed that can house Tonnetze: geometrical duals of voice-leading spaces and Fourier phase spaces. Fourier phase spaces are particularly appropriate for Tonnetze in that their objects are pitch-class distributions (real-valued weightings of the 12 pitch classes) and proximity in these space relates to shared pitch-class content. They admit of a particularly general method of constructing a geometrical Tonnetz that allows for interval and chord duplications in a toroidal geometry. This article examines how these duplications can relate to important musical concepts such as key or pitch height, and details a method of removing such redundancies and the resulting changes to the homology of the space. The method also transfers to the rhythmic domain, defining Zeitnetze for cyclic rhythms. A number of possible Tonnetze are illustrated: on triads, seventh chords, ninth chords, scalar tetrachords, scales, etc., as well as Zeitnetze on common cyclic rhythms or timelines. Their different topologies – whether orientable, bounded, manifold, etc. – reveal some of the topological character of musical concepts.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2020.1725667","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6
Abstract
The music-theoretic idea of a Tonnetz can be generalized at different levels: as a network of chords relating by maximal intersection, a simplicial complex in which vertices represent notes and simplices represent chords, and as a triangulation of a manifold or other geometrical space. The geometrical construct is of particular interest, in that allows us to represent inherently topological aspects to important musical concepts. Two kinds of music-theoretical geometry have been proposed that can house Tonnetze: geometrical duals of voice-leading spaces and Fourier phase spaces. Fourier phase spaces are particularly appropriate for Tonnetze in that their objects are pitch-class distributions (real-valued weightings of the 12 pitch classes) and proximity in these space relates to shared pitch-class content. They admit of a particularly general method of constructing a geometrical Tonnetz that allows for interval and chord duplications in a toroidal geometry. This article examines how these duplications can relate to important musical concepts such as key or pitch height, and details a method of removing such redundancies and the resulting changes to the homology of the space. The method also transfers to the rhythmic domain, defining Zeitnetze for cyclic rhythms. A number of possible Tonnetze are illustrated: on triads, seventh chords, ninth chords, scalar tetrachords, scales, etc., as well as Zeitnetze on common cyclic rhythms or timelines. Their different topologies – whether orientable, bounded, manifold, etc. – reveal some of the topological character of musical concepts.
期刊介绍:
Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.