Bayesian inference, model selection and likelihood estimation using fast rejection sampling: the Conway-Maxwell-Poisson distribution

Alan Benson, N. Friel
{"title":"Bayesian inference, model selection and likelihood estimation using fast rejection sampling: the Conway-Maxwell-Poisson distribution","authors":"Alan Benson, N. Friel","doi":"10.1214/20-ba1230","DOIUrl":null,"url":null,"abstract":"Bayesian inference for models with intractable likelihood functions represents a challenging suite of problems in modern statistics. In this work we analyse the Conway-Maxwell-Poisson (COM-Poisson) distribution, a two parameter generalisation of the Poisson distribution. COM-Poisson regression modelling allows the flexibility to model dispersed count data as part of a generalised linear model (GLM) with a COM-Poisson response, where exogenous covariates control the mean and dispersion level of the response. The major difficulty with COM-Poisson regression is that the likelihood function contains multiple intractable normalising constants and is not amenable to standard inference and MCMC techniques. Recent work by Chanialidis et al. (2017) has seen the development of a sampler to draw random variates from the COM-Poisson likelihood using a rejection sampling algorithm. We provide a new rejection sampler for the COM-Poisson distribution which significantly reduces the CPU time required to perform inference for COM-Poisson regression models. A novel extension of this work shows that for any intractable likelihood function with an associated rejection sampler it is possible to construct unbiased estimators of the intractable likelihood which proves useful for model selection or for use within pseudo-marginal MCMC algorithms (Andrieu and Roberts, 2009). We demonstrate all of these methods on a real-world dataset of takeover bids.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ba1230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Bayesian inference for models with intractable likelihood functions represents a challenging suite of problems in modern statistics. In this work we analyse the Conway-Maxwell-Poisson (COM-Poisson) distribution, a two parameter generalisation of the Poisson distribution. COM-Poisson regression modelling allows the flexibility to model dispersed count data as part of a generalised linear model (GLM) with a COM-Poisson response, where exogenous covariates control the mean and dispersion level of the response. The major difficulty with COM-Poisson regression is that the likelihood function contains multiple intractable normalising constants and is not amenable to standard inference and MCMC techniques. Recent work by Chanialidis et al. (2017) has seen the development of a sampler to draw random variates from the COM-Poisson likelihood using a rejection sampling algorithm. We provide a new rejection sampler for the COM-Poisson distribution which significantly reduces the CPU time required to perform inference for COM-Poisson regression models. A novel extension of this work shows that for any intractable likelihood function with an associated rejection sampler it is possible to construct unbiased estimators of the intractable likelihood which proves useful for model selection or for use within pseudo-marginal MCMC algorithms (Andrieu and Roberts, 2009). We demonstrate all of these methods on a real-world dataset of takeover bids.
贝叶斯推理,模型选择和使用快速拒绝抽样的似然估计:康威-麦克斯韦-泊松分布
贝叶斯推理模型与难以处理的似然函数代表了一个具有挑战性的问题,在现代统计套件。本文分析了康威-麦克斯韦-泊松(com -泊松)分布,这是泊松分布的一种双参数推广。com -泊松回归模型允许灵活地将分散计数数据建模为具有com -泊松响应的广义线性模型(GLM)的一部分,其中外生协变量控制响应的平均值和分散水平。COM-Poisson回归的主要困难是似然函数包含多个难以处理的规范化常数,不适合标准推理和MCMC技术。Chanialidis等人(2017)最近的工作已经看到了一种采样器的发展,该采样器使用拒绝采样算法从com -泊松似然中提取随机变量。我们为com -泊松分布提供了一种新的拒绝采样器,它显着减少了执行com -泊松回归模型推理所需的CPU时间。这项工作的一个新的扩展表明,对于任何具有相关拒绝采样器的难处理似然函数,都有可能构建难处理似然的无偏估计,这被证明对模型选择或伪边际MCMC算法中使用是有用的(Andrieu和Roberts, 2009)。我们在一个真实的收购出价数据集上展示了所有这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信