{"title":"Learning Linear Transformations for Fast Image and Video Style Transfer","authors":"Xueting Li, Sifei Liu, J. Kautz, Ming-Hsuan Yang","doi":"10.1109/CVPR.2019.00393","DOIUrl":null,"url":null,"abstract":"Given a random pair of images, a universal style transfer method extracts the feel from a reference image to synthesize an output based on the look of a content image. Recent algorithms based on second-order statistics, however, are either computationally expensive or prone to generate artifacts due to the trade-off between image quality and runtime performance. In this work, we present an approach for universal style transfer that learns the transformation matrix in a data-driven fashion. Our algorithm is efficient yet flexible to transfer different levels of styles with the same auto-encoder network. It also produces stable video style transfer results due to the preservation of the content affinity. In addition, we propose a linear propagation module to enable a feed-forward network for photo-realistic style transfer. We demonstrate the effectiveness of our approach on three tasks: artistic style, photo-realistic and video style transfer, with comparisons to state-of-the-art methods.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"40 1","pages":"3804-3812"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 178
Abstract
Given a random pair of images, a universal style transfer method extracts the feel from a reference image to synthesize an output based on the look of a content image. Recent algorithms based on second-order statistics, however, are either computationally expensive or prone to generate artifacts due to the trade-off between image quality and runtime performance. In this work, we present an approach for universal style transfer that learns the transformation matrix in a data-driven fashion. Our algorithm is efficient yet flexible to transfer different levels of styles with the same auto-encoder network. It also produces stable video style transfer results due to the preservation of the content affinity. In addition, we propose a linear propagation module to enable a feed-forward network for photo-realistic style transfer. We demonstrate the effectiveness of our approach on three tasks: artistic style, photo-realistic and video style transfer, with comparisons to state-of-the-art methods.