C. J. Schwab, M. J. Colville, A. Fullerton, K. Mcmahon
{"title":"Evidence of endogenous mono-ADP-ribosylation of cardiac proteins via anti-ADP-ribosylarginine immunoreactivity.","authors":"C. J. Schwab, M. J. Colville, A. Fullerton, K. Mcmahon","doi":"10.1111/J.1525-1373.2000.22355.X","DOIUrl":null,"url":null,"abstract":"Arginine-specific mono-ADP-ribosylation of proteins and arginine-specific mono-ADP-ribosyltransferase occur in heart. We developed a polyclonal antiserum, R-28, against ADP-ribosylpolyarginine that recognized mono-ADP-ribosylated proteins and identified the major mono-ADP-ribosylation products of quail heart. Treatment of Immobilon-bound ADP-ribosylated Gs protein with hydroxylamine under conditions that remove ADP-ribose from its arginines eliminated R-28 immunoreactivity to Gs. Also, R-28 immunoreactivity to quail heart proteins was removed by NaOH and phosphodiesterase I treatments. Similar treatment with mercuric chloride did not remove the immunoreactivity but did remove exogenously (via in vitro pertussis toxin treatment) added ADP-ribose from cysteine of cardiac Gi/Go proteins. The antiserum did not appear to react with ADP-ribosylasparagine of Rho (formed by C3 toxin), ADP-ribosyldiphthamide of elongation factor 2 (formed by diphtheria toxin) in quail heart preparations, or polyADP-ribosylated proteins of a neonate rat cardiac nuclear preparation. Thus, the R-28 antiserum appears to contain predominantly antibodies directed against ADP-ribosylarginine. To test the usefulness of R-28, immunoblotting of subcellular fractions of quail heart was performed. R-28 showed the greatest immunoreactivity in the sarcolemma with significant immunoreactivity in denser membrane fractions. The cytosol also contained an immunoreactive band distinct from those found in the membranes. Hydroxylamine treatment eliminated immunoreactivity in the sarcolemma and denser membrane fractions but not the cytosol, suggesting the membranous immunoreactive bands contain ADP-ribosylarginine. In conclusion, a polyclonal antiserum that recognizes ADP-ribosylarginine proteins has been raised. The usefulness of the antiserum is demonstrated by the characterization of endogenous arginine mono-ADP-ribosylation products in quail heart. The quail heart has several sarcolemmal and denser membrane fraction proteins that appear to be mono-ADP-ribosylated on arginines.","PeriodicalId":20618,"journal":{"name":"Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.1525-1373.2000.22355.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Arginine-specific mono-ADP-ribosylation of proteins and arginine-specific mono-ADP-ribosyltransferase occur in heart. We developed a polyclonal antiserum, R-28, against ADP-ribosylpolyarginine that recognized mono-ADP-ribosylated proteins and identified the major mono-ADP-ribosylation products of quail heart. Treatment of Immobilon-bound ADP-ribosylated Gs protein with hydroxylamine under conditions that remove ADP-ribose from its arginines eliminated R-28 immunoreactivity to Gs. Also, R-28 immunoreactivity to quail heart proteins was removed by NaOH and phosphodiesterase I treatments. Similar treatment with mercuric chloride did not remove the immunoreactivity but did remove exogenously (via in vitro pertussis toxin treatment) added ADP-ribose from cysteine of cardiac Gi/Go proteins. The antiserum did not appear to react with ADP-ribosylasparagine of Rho (formed by C3 toxin), ADP-ribosyldiphthamide of elongation factor 2 (formed by diphtheria toxin) in quail heart preparations, or polyADP-ribosylated proteins of a neonate rat cardiac nuclear preparation. Thus, the R-28 antiserum appears to contain predominantly antibodies directed against ADP-ribosylarginine. To test the usefulness of R-28, immunoblotting of subcellular fractions of quail heart was performed. R-28 showed the greatest immunoreactivity in the sarcolemma with significant immunoreactivity in denser membrane fractions. The cytosol also contained an immunoreactive band distinct from those found in the membranes. Hydroxylamine treatment eliminated immunoreactivity in the sarcolemma and denser membrane fractions but not the cytosol, suggesting the membranous immunoreactive bands contain ADP-ribosylarginine. In conclusion, a polyclonal antiserum that recognizes ADP-ribosylarginine proteins has been raised. The usefulness of the antiserum is demonstrated by the characterization of endogenous arginine mono-ADP-ribosylation products in quail heart. The quail heart has several sarcolemmal and denser membrane fraction proteins that appear to be mono-ADP-ribosylated on arginines.