Fg2seq: Effectively Encoding Knowledge for End-To-End Task-Oriented Dialog

Zhenhao He, Yuhong He, Qingyao Wu, Jian Chen
{"title":"Fg2seq: Effectively Encoding Knowledge for End-To-End Task-Oriented Dialog","authors":"Zhenhao He, Yuhong He, Qingyao Wu, Jian Chen","doi":"10.1109/ICASSP40776.2020.9053667","DOIUrl":null,"url":null,"abstract":"End-to-end Task-oriented spoken dialog systems typically require modeling two types of inputs, namely, the dialog history which is a sequence of utterances and the knowledge base (KB) associated with the dialog history. While modeling these inputs, current state-of-the-art models typically ignore the rich structure in the knowledge graph or its intrinsic association with the dialog history. In this paper, we propose a Flow-to-Graph seq2seq model (FG2Seq) which can effectively encode knowledge by considering inherent structural information of the knowledge graph and latent semantic information from dialog history. Experiments on two publicly available task oriented dialog datasets show that our proposed FG2Seq achieves robust performance on generating appropriate system responses and outperforms the baseline systems.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"63 1","pages":"8029-8033"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

End-to-end Task-oriented spoken dialog systems typically require modeling two types of inputs, namely, the dialog history which is a sequence of utterances and the knowledge base (KB) associated with the dialog history. While modeling these inputs, current state-of-the-art models typically ignore the rich structure in the knowledge graph or its intrinsic association with the dialog history. In this paper, we propose a Flow-to-Graph seq2seq model (FG2Seq) which can effectively encode knowledge by considering inherent structural information of the knowledge graph and latent semantic information from dialog history. Experiments on two publicly available task oriented dialog datasets show that our proposed FG2Seq achieves robust performance on generating appropriate system responses and outperforms the baseline systems.
Fg2seq:端到端任务导向对话的有效知识编码
端到端面向任务的口语对话系统通常需要建模两种类型的输入,即对话历史(一个话语序列)和与对话历史相关的知识库(KB)。在对这些输入建模时,当前最先进的模型通常忽略了知识图中的丰富结构或其与对话历史的内在关联。本文提出了一种流到图的seq2seq模型(FG2Seq),该模型通过考虑知识图固有的结构信息和对话历史的潜在语义信息,可以有效地对知识进行编码。在两个公开可用的面向任务的对话数据集上的实验表明,我们提出的FG2Seq在生成适当的系统响应方面取得了稳健的性能,并且优于基线系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信