Entanglement properties of random invariant quantum states

Wei Xie, Weijing Li
{"title":"Entanglement properties of random invariant quantum states","authors":"Wei Xie, Weijing Li","doi":"10.26421/QIC22.11-12-1","DOIUrl":null,"url":null,"abstract":"Entanglement properties of random multipartite quantum states which are invariant under global $\\textnormal{SU}(d)$ action are investigated. The random states live in the tensor power of an irreducible representation of $\\textnormal{SU}(d)$. We calculate and analyze the expectation and fluctuation of the second-order R\\'enyi entanglement measure of the random invariant and near-invariant states in high dimension, and reveal the phenomenon of concentration of measure the random states exhibit. We show that with high probability a random SU($d$)-invariant state is close to being maximally entangled with respect to any bipartite cut as the dimension of individual system goes to infinity. We also show that this generic entanglement property of random SU(2)-invariant state is robust to arbitrarily finite disturbation.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"338 1","pages":"901-923"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC22.11-12-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Entanglement properties of random multipartite quantum states which are invariant under global $\textnormal{SU}(d)$ action are investigated. The random states live in the tensor power of an irreducible representation of $\textnormal{SU}(d)$. We calculate and analyze the expectation and fluctuation of the second-order R\'enyi entanglement measure of the random invariant and near-invariant states in high dimension, and reveal the phenomenon of concentration of measure the random states exhibit. We show that with high probability a random SU($d$)-invariant state is close to being maximally entangled with respect to any bipartite cut as the dimension of individual system goes to infinity. We also show that this generic entanglement property of random SU(2)-invariant state is robust to arbitrarily finite disturbation.
随机不变量子态的纠缠特性
研究了全局$\textnormal{SU}(d)$作用下不变的随机多部量子态的纠缠特性。随机状态存在于$\textnormal{SU}(d)$的不可约表示的张量幂中。计算并分析了高维随机不变态和近不变态的二阶R\'enyi纠缠测度的期望和涨落,揭示了随机态所表现出的测度集中现象。我们证明了当单个系统的维数趋于无穷时,一个随机的SU($d$)不变状态对于任意二部切割有高概率接近于最大纠缠态。我们还证明了随机SU(2)不变态的这种一般纠缠性质对任意有限扰动具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信