Some results on Steiner decomposition number of graphs

E. Merly, Mahiba M
{"title":"Some results on Steiner decomposition number of graphs","authors":"E. Merly, Mahiba M","doi":"10.48129/kjs.16863","DOIUrl":null,"url":null,"abstract":"Let G be a connected graph with Steiner number s(G). A decomposition π = {G1,G2, ...,Gn} is said to be a Steiner decomposition if s(Gi) = s(G) for all i (1 ≤ i ≤ n). The maximum cardinality obtained for the Steiner decomposition π of G is called the Steiner decomposition number of G and is denoted by πst(G). In this paper we present a relation between Steiner decomposition number and independence number of G. Steiner decomposition number for some power of paths are discussed. It is also shown that given any pair m, n of positive integers with m ≥ 2 there exists a connected graph G such that s(G) = m and πst(G) = n.","PeriodicalId":49933,"journal":{"name":"Kuwait Journal of Science & Engineering","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48129/kjs.16863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a connected graph with Steiner number s(G). A decomposition π = {G1,G2, ...,Gn} is said to be a Steiner decomposition if s(Gi) = s(G) for all i (1 ≤ i ≤ n). The maximum cardinality obtained for the Steiner decomposition π of G is called the Steiner decomposition number of G and is denoted by πst(G). In this paper we present a relation between Steiner decomposition number and independence number of G. Steiner decomposition number for some power of paths are discussed. It is also shown that given any pair m, n of positive integers with m ≥ 2 there exists a connected graph G such that s(G) = m and πst(G) = n.
关于图的Steiner分解数的一些结果
设G为具有斯坦纳数s(G)的连通图。A分解π = {G1,G2,…,对于所有i(1≤i≤n),Gn}是s(Gi) = s(G)的斯坦纳分解。对于G的斯坦纳分解π得到的最大基数称为G的斯坦纳分解数,用πst(G)表示。本文讨论了若干次幂路径的斯坦纳分解数与g独立数之间的关系。还证明了给定任意m≥2的正整数对m, n,存在一个连通图G使s(G) = m且πst(G) = n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Kuwait Journal of Science & Engineering
Kuwait Journal of Science & Engineering MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信