Stability and measurability of the modified lower dimension

R. Balka, Márton Elekes, V. Kiss
{"title":"Stability and measurability of the modified lower dimension","authors":"R. Balka, Márton Elekes, V. Kiss","doi":"10.1090/proc/16029","DOIUrl":null,"url":null,"abstract":"The lower dimension $\\dim_L$ is the dual concept of the Assouad dimension. As it fails to be monotonic, Fraser and Yu introduced the modified lower dimension $\\dim_{ML}$ by making the lower dimension monotonic with the simple formula $\\dim_{ML} X=\\sup\\{\\dim_L E: E\\subset X\\}$. \nAs our first result we prove that the modified lower dimension is finitely stable in any metric space, answering a question of Fraser and Yu. \nWe prove a new, simple characterization for the modified lower dimension. For a metric space $X$ let $\\mathcal{K}(X)$ denote the metric space of the non-empty compact subsets of $X$ endowed with the Hausdorff metric. As an application of our characterization, we show that the map $\\dim_{ML} \\colon \\mathcal{K}(X)\\to [0,\\infty]$ is Borel measurable. More precisely, it is of Baire class $2$, but in general not of Baire class $1$. This answers another question of Fraser and Yu. \nFinally, we prove that the modified lower dimension is not Borel measurable defined on the closed sets of $\\ell^1$ endowed with the Effros Borel structure.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/16029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The lower dimension $\dim_L$ is the dual concept of the Assouad dimension. As it fails to be monotonic, Fraser and Yu introduced the modified lower dimension $\dim_{ML}$ by making the lower dimension monotonic with the simple formula $\dim_{ML} X=\sup\{\dim_L E: E\subset X\}$. As our first result we prove that the modified lower dimension is finitely stable in any metric space, answering a question of Fraser and Yu. We prove a new, simple characterization for the modified lower dimension. For a metric space $X$ let $\mathcal{K}(X)$ denote the metric space of the non-empty compact subsets of $X$ endowed with the Hausdorff metric. As an application of our characterization, we show that the map $\dim_{ML} \colon \mathcal{K}(X)\to [0,\infty]$ is Borel measurable. More precisely, it is of Baire class $2$, but in general not of Baire class $1$. This answers another question of Fraser and Yu. Finally, we prove that the modified lower dimension is not Borel measurable defined on the closed sets of $\ell^1$ endowed with the Effros Borel structure.
修正下维的稳定性和可测性
较低的维度$\dim_L$是阿苏德维度的双重概念。由于它不是单调的,Fraser和Yu引入了修改后的下维$\dim_{ML}$,用简单公式$\dim_{ML} X=\sup\{\dim_L E: E\subset X\}$使下维单调。作为我们的第一个结果,我们证明了修正的下维在任何度量空间是有限稳定的,回答了Fraser和Yu的一个问题。我们证明了一个新的、简单的修正低维的表征。对于度量空间$X$,设$\mathcal{K}(X)$表示具有Hausdorff度量的$X$的非空紧子集的度量空间。作为我们的表征的一个应用,我们证明了地图$\dim_{ML} \colon \mathcal{K}(X)\to [0,\infty]$是Borel可测量的。更准确地说,它属于Baire类$2$,但一般不属于Baire类$1$。这就回答了Fraser和Yu的另一个问题。最后,我们证明了在具有Effros Borel结构的$\ell^1$闭集上定义的修正下维是不可Borel可测的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信