Enhancement of SO2 Gas Sensing Performance of Co3O4 Spinel by Cu Substitution

P. N. Anantharamaiah, S. Giri
{"title":"Enhancement of SO2 Gas Sensing Performance of Co3O4 Spinel by Cu Substitution","authors":"P. N. Anantharamaiah, S. Giri","doi":"10.1166/sl.2020.4199","DOIUrl":null,"url":null,"abstract":"Single-phase spinel cobalt oxide (Co3O4) and copper-substituted cobalt oxide (Co2.8Cu0.2O4) nanomaterials were synthesized via a co-precipitation route. To explore the potential applicability of the Co3O4 and\n Co2.8Cu0.2O4 materials for gas sensor fabrication, their SO2 gas sensing characteristics were studied at three different temperatures using the gas concentration of 3 ppm. Unsubstituted Co3O4 sample exhibits poor response towards\n SO2 gas whereas the Cu-substituted sample showed superior gas sensing characteristics such as gas response, response time and recovery time at all three temperatures. Among the three studied temperatures, the maximum gas response of 7.5% was found at 200 °C with recovery and\n response times of 26 sec, indicating an optimal temperature. Our results demonstrate that the nanostructured Co2.8Cu0.2O4 material could be a potential candidate to design SO2 gas sensor for detection of low concentration gas.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"255 1","pages":"83-88"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Single-phase spinel cobalt oxide (Co3O4) and copper-substituted cobalt oxide (Co2.8Cu0.2O4) nanomaterials were synthesized via a co-precipitation route. To explore the potential applicability of the Co3O4 and Co2.8Cu0.2O4 materials for gas sensor fabrication, their SO2 gas sensing characteristics were studied at three different temperatures using the gas concentration of 3 ppm. Unsubstituted Co3O4 sample exhibits poor response towards SO2 gas whereas the Cu-substituted sample showed superior gas sensing characteristics such as gas response, response time and recovery time at all three temperatures. Among the three studied temperatures, the maximum gas response of 7.5% was found at 200 °C with recovery and response times of 26 sec, indicating an optimal temperature. Our results demonstrate that the nanostructured Co2.8Cu0.2O4 material could be a potential candidate to design SO2 gas sensor for detection of low concentration gas.
Cu取代提高Co3O4尖晶石SO2气敏性能
采用共沉淀法合成了单相尖晶石氧化钴(Co3O4)和铜取代氧化钴(Co2.8Cu0.2O4)纳米材料。为了探索Co3O4和Co2.8Cu0.2O4材料在气体传感器制造中的潜在适用性,在3 ppm的气体浓度下,研究了它们在3种不同温度下的SO2气敏特性。未取代的Co3O4样品对SO2气体的响应较差,而cu取代的样品在三种温度下均表现出优异的气敏特性,如气体响应、响应时间和恢复时间。在3个温度中,200℃时气体响应最大,为7.5%,回收率和响应时间为26秒,为最佳温度。研究结果表明,纳米结构的Co2.8Cu0.2O4材料可以作为设计SO2气体传感器的潜在候选者,用于检测低浓度气体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensor Letters
Sensor Letters 工程技术-电化学
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信