The Classification of Torsion-free TI-Groups

Pub Date : 2022-12-01 DOI:10.1142/s1005386722000414
R. Andruszkiewicz, M. Woronowicz
{"title":"The Classification of Torsion-free TI-Groups","authors":"R. Andruszkiewicz, M. Woronowicz","doi":"10.1142/s1005386722000414","DOIUrl":null,"url":null,"abstract":"An abelian group [Formula: see text] is called a [Formula: see text]-group if every associative ring with the additive group [Formula: see text] is filial. The filiality of a ring [Formula: see text] means that the ring [Formula: see text] is associative and all ideals of any ideal of [Formula: see text] are ideals in [Formula: see text]. In this paper, torsion-free [Formula: see text]-groups are described up to the structure of associative nil groups. It is also proved that, for torsion-free abelian groups that are not associative nil, the condition [Formula: see text] implies the indecomposability and homogeneity. The paper contains constructions of [Formula: see text] such groups of any rank from 2 to[Formula: see text] which are pairwise non-isomorphic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An abelian group [Formula: see text] is called a [Formula: see text]-group if every associative ring with the additive group [Formula: see text] is filial. The filiality of a ring [Formula: see text] means that the ring [Formula: see text] is associative and all ideals of any ideal of [Formula: see text] are ideals in [Formula: see text]. In this paper, torsion-free [Formula: see text]-groups are described up to the structure of associative nil groups. It is also proved that, for torsion-free abelian groups that are not associative nil, the condition [Formula: see text] implies the indecomposability and homogeneity. The paper contains constructions of [Formula: see text] such groups of any rank from 2 to[Formula: see text] which are pairwise non-isomorphic.
分享
查看原文
无扭转ti群的分类
如果与加性群(公式:见文)相结合的每个环都是子环,则一个阿贝尔群(公式:见文)称为[公式:见文]群。环[公式:见文]的亲缘性意味着环[公式:见文]是结合的,并且[公式:见文]的任何理想的所有理想都是[公式:见文]中的理想。本文描述了无扭[公式:见文]-群直至结合型零群的结构。还证明了,对于非关联零的无扭阿贝尔群,条件[公式:见文]暗示了不可分解性和齐性。本文包含了[公式:见文]从2到[公式:见文]的任意秩的对非同构群的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信