{"title":"Uniformly convergent numerical method for singularly perturbed 2D delay parabolic convection-diffusion problems on Bakhvalov-Shishkin mesh","authors":"A. Das, S. Natesan","doi":"10.1504/IJMMNO.2018.10015799","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a class of singularly perturbed 2D delay parabolic convection-diffusion initial-boundary-value problems. To solve this problem numerically, we use a modified Shishkin mesh (Bakhvalov-Shishkin mesh) for the discretisation of the domain in the spatial directions and uniform mesh in the temporal direction. The time derivative is discretised by the implicit-Euler scheme and the spatial derivatives are discretised by the upwind finite difference scheme. We derive some conditions on the mesh-generating functions which are useful for the convergence of the method, uniformly with respect to the perturbation parameter. We prove that the proposed scheme on the Bakhvalov-Shishkin mesh is first-order convergent in the discrete supremum norm, which is optimal and does not require any extra computational effort compared to the standard Shishkin mesh. Numerical experiments verify the theoretical results.","PeriodicalId":13553,"journal":{"name":"Int. J. Math. Model. Numer. Optimisation","volume":"91 1","pages":"305-330"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Math. Model. Numer. Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMMNO.2018.10015799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, we consider a class of singularly perturbed 2D delay parabolic convection-diffusion initial-boundary-value problems. To solve this problem numerically, we use a modified Shishkin mesh (Bakhvalov-Shishkin mesh) for the discretisation of the domain in the spatial directions and uniform mesh in the temporal direction. The time derivative is discretised by the implicit-Euler scheme and the spatial derivatives are discretised by the upwind finite difference scheme. We derive some conditions on the mesh-generating functions which are useful for the convergence of the method, uniformly with respect to the perturbation parameter. We prove that the proposed scheme on the Bakhvalov-Shishkin mesh is first-order convergent in the discrete supremum norm, which is optimal and does not require any extra computational effort compared to the standard Shishkin mesh. Numerical experiments verify the theoretical results.