Convergence of Blockchain, k-medoids and homomorphic encryption for privacy preserving biomedical data classification

Shamima Akter , Farhana Reza , Manik Ahmed
{"title":"Convergence of Blockchain, k-medoids and homomorphic encryption for privacy preserving biomedical data classification","authors":"Shamima Akter ,&nbsp;Farhana Reza ,&nbsp;Manik Ahmed","doi":"10.1016/j.iotcps.2022.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>Data privacy on the Internet of Medical Things (IoMT) remains a critical concern when handling biomedical data. While extant studies focus on cryptography and differential privacy, few of them capture the utility and authenticity of data. As a result, data privacy remains the primary concern when training a machine learning (ML) model with IoMT data from various data sources/owners such as <em>k − medoids</em>. To overcome the above-mentioned issues, this study proposes secure ​<em>k − medoids</em> ​that are implemented together with Blockchain and partial homomorphic cryptosystem (Paillier) to ensure authenticity and protect all entities (i.e., data owner and data analyst) data privacy. The homomorphic property of Paillier is utilized to develop secure building blocks (i.e., secure polynomial operations, secure comparison, and secure biasing operations) to ensure data privacy and eliminate dependency on any third parties. We utilized three different biomedical datasets, and these are (I) Heart Disease Data (HDD), (II) Diabetes Data (DD), and (III) Breast Cancer Wisconsin Data (BCWD). Rigorous security analysis demonstrates that secure ​<em>k − medoids</em> ​protect against sensitive data breaches. It also showed superior performance in both BCWD (Accuracy 97.80%, Precision 96.83%, and Recall 99.80%) and HDD (Accuracy 82.50%, Precision 81.28%, and Recall 80.50%) datasets, respectively. However, similar performance was not reflected in the case of the DD dataset. Furthermore, the study explains why such performance results are observed. In addition, the proposed system has been proven to take less execution time compared to the extant studies.</p></div>","PeriodicalId":100724,"journal":{"name":"Internet of Things and Cyber-Physical Systems","volume":"2 ","pages":"Pages 99-110"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667345222000165/pdfft?md5=ea8d6340078d4828cc7ed23824aadbce&pid=1-s2.0-S2667345222000165-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things and Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667345222000165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Data privacy on the Internet of Medical Things (IoMT) remains a critical concern when handling biomedical data. While extant studies focus on cryptography and differential privacy, few of them capture the utility and authenticity of data. As a result, data privacy remains the primary concern when training a machine learning (ML) model with IoMT data from various data sources/owners such as k − medoids. To overcome the above-mentioned issues, this study proposes secure ​k − medoids ​that are implemented together with Blockchain and partial homomorphic cryptosystem (Paillier) to ensure authenticity and protect all entities (i.e., data owner and data analyst) data privacy. The homomorphic property of Paillier is utilized to develop secure building blocks (i.e., secure polynomial operations, secure comparison, and secure biasing operations) to ensure data privacy and eliminate dependency on any third parties. We utilized three different biomedical datasets, and these are (I) Heart Disease Data (HDD), (II) Diabetes Data (DD), and (III) Breast Cancer Wisconsin Data (BCWD). Rigorous security analysis demonstrates that secure ​k − medoids ​protect against sensitive data breaches. It also showed superior performance in both BCWD (Accuracy 97.80%, Precision 96.83%, and Recall 99.80%) and HDD (Accuracy 82.50%, Precision 81.28%, and Recall 80.50%) datasets, respectively. However, similar performance was not reflected in the case of the DD dataset. Furthermore, the study explains why such performance results are observed. In addition, the proposed system has been proven to take less execution time compared to the extant studies.

区块链、k-介质和同态加密的收敛性保护生物医学数据分类
在处理生物医学数据时,医疗物联网(IoMT)上的数据隐私仍然是一个关键问题。虽然现有的研究主要集中在密码学和差分隐私上,但很少有研究能够捕捉到数据的实用性和真实性。因此,当使用来自各种数据源/所有者(如k - medioid)的IoMT数据训练机器学习(ML)模型时,数据隐私仍然是主要关注的问题。为了克服上述问题,本研究提出了与区块链和部分同态密码系统(Paillier)一起实现的安全k -介质,以确保真实性并保护所有实体(即数据所有者和数据分析师)的数据隐私。利用Paillier的同态特性开发安全构建块(即安全多项式运算、安全比较、安全偏置运算),确保数据隐私,消除对任何第三方的依赖。我们使用了三种不同的生物医学数据集,它们是(I)心脏病数据(HDD), (II)糖尿病数据(DD)和(III)乳腺癌威斯康星州数据(BCWD)。严格的安全分析表明,安全的k -介质可以防止敏感数据泄露。它在BCWD(准确率97.80%,精度96.83%,召回率99.80%)和HDD(准确率82.50%,精度81.28%,召回率80.50%)数据集上也表现出优异的性能。然而,在DD数据集的情况下没有反映出类似的性能。此外,本研究还解释了为什么会观察到这样的性能结果。此外,与现有研究相比,所提出的系统已被证明需要更少的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信