coSense

Stephan Schmeißer, Gregor Schiele
{"title":"coSense","authors":"Stephan Schmeißer, Gregor Schiele","doi":"10.1145/3395233","DOIUrl":null,"url":null,"abstract":"We present coSense—the collaborative, fault-tolerant, and adaptive sensing middleware for the Internet-of-Things (IoT). By actively harnessing the greatest asset of the IoT, the sheer number of devices, coSense is able to provide easy data acquisition with quality-of-service-based data cleaning by combining unsupervised learning and information fusion. It can also greatly improve sensor accuracy and fault tolerance to produce measurements specifically tailored for modern data-driven IoT empowered applications. In this article, we focus on the general concepts behind coSense and evaluate the accuracy gain based on a real-world dataset.","PeriodicalId":93404,"journal":{"name":"ACM/IMS transactions on data science","volume":"125 1","pages":"1 - 21"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IMS transactions on data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present coSense—the collaborative, fault-tolerant, and adaptive sensing middleware for the Internet-of-Things (IoT). By actively harnessing the greatest asset of the IoT, the sheer number of devices, coSense is able to provide easy data acquisition with quality-of-service-based data cleaning by combining unsupervised learning and information fusion. It can also greatly improve sensor accuracy and fault tolerance to produce measurements specifically tailored for modern data-driven IoT empowered applications. In this article, we focus on the general concepts behind coSense and evaluate the accuracy gain based on a real-world dataset.
我们提出了cosense——用于物联网(IoT)的协作、容错和自适应传感中间件。通过积极利用物联网的最大资产,即大量设备,coSense能够通过结合无监督学习和信息融合,提供简单的数据采集和基于服务质量的数据清理。它还可以大大提高传感器的精度和容错性,为现代数据驱动的物联网应用量身定制测量。在本文中,我们将重点介绍coSense背后的一般概念,并基于真实数据集评估精度增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信