Diffusion runs low on persistence fast

Chao Chen, H. Edelsbrunner
{"title":"Diffusion runs low on persistence fast","authors":"Chao Chen, H. Edelsbrunner","doi":"10.1109/ICCV.2011.6126271","DOIUrl":null,"url":null,"abstract":"Interpreting an image as a function on a compact subset of the Euclidean plane, we get its scale-space by diffusion, spreading the image over the entire plane. This generates a 1-parameter family of functions alternatively defined as convolutions with a progressively wider Gaussian kernel. We prove that the corresponding 1-parameter family of persistence diagrams have norms that go rapidly to zero as time goes to infinity. This result rationalizes experimental observations about scale-space. We hope this will lead to targeted improvements of related computer vision methods.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"106 1","pages":"423-430"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Interpreting an image as a function on a compact subset of the Euclidean plane, we get its scale-space by diffusion, spreading the image over the entire plane. This generates a 1-parameter family of functions alternatively defined as convolutions with a progressively wider Gaussian kernel. We prove that the corresponding 1-parameter family of persistence diagrams have norms that go rapidly to zero as time goes to infinity. This result rationalizes experimental observations about scale-space. We hope this will lead to targeted improvements of related computer vision methods.
扩散在持久性上运行得很快
将图像解释为欧几里得平面紧子集上的函数,我们通过扩散得到它的尺度空间,将图像扩展到整个平面上。这产生了一个1参数的函数族,或者定义为具有逐渐变宽的高斯核的卷积。我们证明了相应的1参数持久性图族具有随着时间趋于无穷而迅速趋近于零的范数。这一结果为尺度空间的实验观察提供了理论依据。我们希望这将导致相关计算机视觉方法的有针对性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信