{"title":"Forecasting Cryptocurrencies: A Comparison of GARCH Models","authors":"Giovanni Angelini, S. Emili","doi":"10.2139/ssrn.3195704","DOIUrl":null,"url":null,"abstract":"In this paper we enhance the literature exploring the forecasting capability of six alternatives GARCH-type models to predict volatility of four of the most traded cryptocurrencies: Bitcoin, Ethereum, Ripple and Litecoin. The analysis is performed on daily data from 1st March 2016 to 28th February 2018.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3195704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper we enhance the literature exploring the forecasting capability of six alternatives GARCH-type models to predict volatility of four of the most traded cryptocurrencies: Bitcoin, Ethereum, Ripple and Litecoin. The analysis is performed on daily data from 1st March 2016 to 28th February 2018.