Generating Investment Strategies Using Multiobjective Genetic Programming And Internet Term Popularity Data

Q4 Mathematics
Martin Jakubéci
{"title":"Generating Investment Strategies Using Multiobjective Genetic Programming And Internet Term Popularity Data","authors":"Martin Jakubéci","doi":"10.1515/aicue-2015-0004","DOIUrl":null,"url":null,"abstract":"Abstract Searching for stock picking strategies can be modelled as a multiobjective optimization problem. The objectives are mostly the profit and risk. Because of the conflicting nature of these objectives, we have to find Pareto optimal solutions. Multiobjective genetic programming (MOGP) can be used to find tree based solutions, using evolutionary operators. The advantage is that this algorithm can combine any number of inputs and generate complex models. Recent research shows, that the popularity of different terms on the internet can be used to enhance the models. This paper deals with a SPEA2 MOGP implementation, which uses Google trends and Wikipedia popularity to find stock investment strategies.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"4 1","pages":"55 - 62"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aicue-2015-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Searching for stock picking strategies can be modelled as a multiobjective optimization problem. The objectives are mostly the profit and risk. Because of the conflicting nature of these objectives, we have to find Pareto optimal solutions. Multiobjective genetic programming (MOGP) can be used to find tree based solutions, using evolutionary operators. The advantage is that this algorithm can combine any number of inputs and generate complex models. Recent research shows, that the popularity of different terms on the internet can be used to enhance the models. This paper deals with a SPEA2 MOGP implementation, which uses Google trends and Wikipedia popularity to find stock investment strategies.
利用多目标遗传规划和互联网词汇流行度数据生成投资策略
摘要股票选择策略的搜索可以建模为一个多目标优化问题。目标主要是利润和风险。由于这些目标的冲突性质,我们必须找到帕累托最优解。多目标遗传规划(MOGP)可用于寻找基于树的解决方案,使用进化算子。该算法的优点是可以组合任意数量的输入并生成复杂的模型。最近的研究表明,互联网上不同术语的流行程度可以用来增强模型。本文研究了一个SPEA2 MOGP的实现,它利用谷歌趋势和维基百科的流行度来寻找股票投资策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信