P. Andreoletti, A. Pernoud, G. Sainz, P. Gouet, H. Jouve
{"title":"Structural studies of Proteus mirabilis catalase in its ground state, oxidized state and in complex with formic acid.","authors":"P. Andreoletti, A. Pernoud, G. Sainz, P. Gouet, H. Jouve","doi":"10.1107/S0907444904001271","DOIUrl":null,"url":null,"abstract":"The structure of Proteus mirabilis catalase in complex with an inhibitor, formic acid, has been solved at 2.3 A resolution. Formic acid is a key ligand of catalase because of its ability to react with the ferric enzyme, giving a high-spin iron complex. Alternatively, it can react with two transient oxidized intermediates of the enzymatic mechanism, compounds I and II. In this work, the structures of native P. mirabilis catalase (PMC) and compound I have also been determined at high resolution (2.0 and 2.5 A, respectively) from frozen crystals. Comparisons between these three PMC structures show that a water molecule present at a distance of 3.5 A from the haem iron in the resting state is absent in the formic acid complex, but reappears in compound I. In addition, movements of solvent molecules are observed during formation of compound I in a cavity located away from the active site, in which a glycerol molecule is replaced by a sulfate. These results give structural insights into the movement of solvent molecules, which may be important in the enzymatic reaction.","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":"47 1","pages":"2163-8"},"PeriodicalIF":2.2000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S0907444904001271","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The structure of Proteus mirabilis catalase in complex with an inhibitor, formic acid, has been solved at 2.3 A resolution. Formic acid is a key ligand of catalase because of its ability to react with the ferric enzyme, giving a high-spin iron complex. Alternatively, it can react with two transient oxidized intermediates of the enzymatic mechanism, compounds I and II. In this work, the structures of native P. mirabilis catalase (PMC) and compound I have also been determined at high resolution (2.0 and 2.5 A, respectively) from frozen crystals. Comparisons between these three PMC structures show that a water molecule present at a distance of 3.5 A from the haem iron in the resting state is absent in the formic acid complex, but reappears in compound I. In addition, movements of solvent molecules are observed during formation of compound I in a cavity located away from the active site, in which a glycerol molecule is replaced by a sulfate. These results give structural insights into the movement of solvent molecules, which may be important in the enzymatic reaction.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.