Structural studies of Proteus mirabilis catalase in its ground state, oxidized state and in complex with formic acid.

IF 2.2 4区 生物学
P. Andreoletti, A. Pernoud, G. Sainz, P. Gouet, H. Jouve
{"title":"Structural studies of Proteus mirabilis catalase in its ground state, oxidized state and in complex with formic acid.","authors":"P. Andreoletti, A. Pernoud, G. Sainz, P. Gouet, H. Jouve","doi":"10.1107/S0907444904001271","DOIUrl":null,"url":null,"abstract":"The structure of Proteus mirabilis catalase in complex with an inhibitor, formic acid, has been solved at 2.3 A resolution. Formic acid is a key ligand of catalase because of its ability to react with the ferric enzyme, giving a high-spin iron complex. Alternatively, it can react with two transient oxidized intermediates of the enzymatic mechanism, compounds I and II. In this work, the structures of native P. mirabilis catalase (PMC) and compound I have also been determined at high resolution (2.0 and 2.5 A, respectively) from frozen crystals. Comparisons between these three PMC structures show that a water molecule present at a distance of 3.5 A from the haem iron in the resting state is absent in the formic acid complex, but reappears in compound I. In addition, movements of solvent molecules are observed during formation of compound I in a cavity located away from the active site, in which a glycerol molecule is replaced by a sulfate. These results give structural insights into the movement of solvent molecules, which may be important in the enzymatic reaction.","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":"47 1","pages":"2163-8"},"PeriodicalIF":2.2000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S0907444904001271","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The structure of Proteus mirabilis catalase in complex with an inhibitor, formic acid, has been solved at 2.3 A resolution. Formic acid is a key ligand of catalase because of its ability to react with the ferric enzyme, giving a high-spin iron complex. Alternatively, it can react with two transient oxidized intermediates of the enzymatic mechanism, compounds I and II. In this work, the structures of native P. mirabilis catalase (PMC) and compound I have also been determined at high resolution (2.0 and 2.5 A, respectively) from frozen crystals. Comparisons between these three PMC structures show that a water molecule present at a distance of 3.5 A from the haem iron in the resting state is absent in the formic acid complex, but reappears in compound I. In addition, movements of solvent molecules are observed during formation of compound I in a cavity located away from the active site, in which a glycerol molecule is replaced by a sulfate. These results give structural insights into the movement of solvent molecules, which may be important in the enzymatic reaction.
变形杆菌过氧化氢酶在基态、氧化态和甲酸络合物下的结构研究。
在2.3 A的分辨率下,解出了奇异变形杆菌过氧化氢酶与抑制剂甲酸配合物的结构。甲酸是过氧化氢酶的关键配体,因为它能够与铁酶反应,产生高自旋铁复合物。或者,它可以与酶促机制的两种瞬态氧化中间体化合物I和II反应。在这项工作中,天然P. mirabilis过氧化氢酶(PMC)和化合物I也在高分辨率(分别为2.0和2.5 A)下从冷冻晶体中测定了结构。对这三种PMC结构的比较表明,甲酸配合物中不存在静息状态下距离血红素铁3.5 a处的水分子,但在化合物I中再次出现。此外,在化合物I形成过程中,在远离活性位点的空腔中观察到溶剂分子的运动,其中甘油分子被硫酸盐取代。这些结果提供了对溶剂分子运动的结构见解,这在酶促反应中可能是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
13.60%
发文量
0
审稿时长
3 months
期刊介绍: Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them. Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged. Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信