Proof-of-Learning: Definitions and Practice

Hengrui Jia, Mohammad Yaghini, Christopher A. Choquette-Choo, Natalie Dullerud, Anvith Thudi, Varun Chandrasekaran, Nicolas Papernot
{"title":"Proof-of-Learning: Definitions and Practice","authors":"Hengrui Jia, Mohammad Yaghini, Christopher A. Choquette-Choo, Natalie Dullerud, Anvith Thudi, Varun Chandrasekaran, Nicolas Papernot","doi":"10.1109/SP40001.2021.00106","DOIUrl":null,"url":null,"abstract":"Training machine learning (ML) models typically involves expensive iterative optimization. Once the model’s final parameters are released, there is currently no mechanism for the entity which trained the model to prove that these parameters were indeed the result of this optimization procedure. Such a mechanism would support security of ML applications in several ways. For instance, it would simplify ownership resolution when multiple parties contest ownership of a specific model. It would also facilitate the distributed training across untrusted workers where Byzantine workers might otherwise mount a denial-ofservice by returning incorrect model updates.In this paper, we remediate this problem by introducing the concept of proof-of-learning in ML. Inspired by research on both proof-of-work and verified computations, we observe how a seminal training algorithm, stochastic gradient descent, accumulates secret information due to its stochasticity. This produces a natural construction for a proof-of-learning which demonstrates that a party has expended the compute require to obtain a set of model parameters correctly. In particular, our analyses and experiments show that an adversary seeking to illegitimately manufacture a proof-of-learning needs to perform at least as much work than is needed for gradient descent itself.We also instantiate a concrete proof-of-learning mechanism in both of the scenarios described above. In model ownership resolution, it protects the intellectual property of models released publicly. In distributed training, it preserves availability of the training procedure. Our empirical evaluation validates that our proof-of-learning mechanism is robust to variance induced by the hardware (e.g., ML accelerators) and software stacks.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"87 1","pages":"1039-1056"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

Training machine learning (ML) models typically involves expensive iterative optimization. Once the model’s final parameters are released, there is currently no mechanism for the entity which trained the model to prove that these parameters were indeed the result of this optimization procedure. Such a mechanism would support security of ML applications in several ways. For instance, it would simplify ownership resolution when multiple parties contest ownership of a specific model. It would also facilitate the distributed training across untrusted workers where Byzantine workers might otherwise mount a denial-ofservice by returning incorrect model updates.In this paper, we remediate this problem by introducing the concept of proof-of-learning in ML. Inspired by research on both proof-of-work and verified computations, we observe how a seminal training algorithm, stochastic gradient descent, accumulates secret information due to its stochasticity. This produces a natural construction for a proof-of-learning which demonstrates that a party has expended the compute require to obtain a set of model parameters correctly. In particular, our analyses and experiments show that an adversary seeking to illegitimately manufacture a proof-of-learning needs to perform at least as much work than is needed for gradient descent itself.We also instantiate a concrete proof-of-learning mechanism in both of the scenarios described above. In model ownership resolution, it protects the intellectual property of models released publicly. In distributed training, it preserves availability of the training procedure. Our empirical evaluation validates that our proof-of-learning mechanism is robust to variance induced by the hardware (e.g., ML accelerators) and software stacks.
学习证明:定义和实践
训练机器学习(ML)模型通常涉及昂贵的迭代优化。一旦模型的最终参数被释放,训练模型的实体目前没有机制来证明这些参数确实是这个优化过程的结果。这样的机制将以多种方式支持机器学习应用程序的安全性。例如,当多方争夺特定模型的所有权时,它将简化所有权解决方案。它还将促进不受信任的工人之间的分布式培训,否则拜占庭工人可能会通过返回错误的模型更新来拒绝服务。在本文中,我们通过在ML中引入学习证明的概念来解决这个问题。受工作量证明和验证计算研究的启发,我们观察了一个开创性的训练算法,随机梯度下降,是如何由于其随机性而积累秘密信息的。这为学习证明产生了一个自然的结构,它表明一方已经扩展了计算需求,以正确地获得一组模型参数。特别是,我们的分析和实验表明,试图非法制造学习证明的对手需要执行至少与梯度下降本身所需的工作一样多的工作。我们还在上述两种场景中实例化了具体的学习证明机制。在模型所有权决议中,它保护公开发布的模型的知识产权。在分布式训练中,它保留了训练过程的可用性。我们的经验评估验证了我们的学习证明机制对硬件(例如ML加速器)和软件堆栈引起的方差具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信