{"title":"Differential spectra of a class of power permutations with Niho exponents","authors":"Zhen Li, Haode Yan","doi":"10.3934/amc.2021060","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\"M1\">\\begin{document}$ m\\geq3 $\\end{document}</tex-math></inline-formula> be a positive integer and <inline-formula><tex-math id=\"M2\">\\begin{document}$ n = 2m $\\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id=\"M3\">\\begin{document}$ f(x) = x^{2^m+3} $\\end{document}</tex-math></inline-formula> be a power permutation over <inline-formula><tex-math id=\"M4\">\\begin{document}$ {\\mathrm {GF}}(2^n) $\\end{document}</tex-math></inline-formula>, which is a monomial with a Niho exponent. In this paper, the differential spectrum of <inline-formula><tex-math id=\"M5\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula> is investigated. It is shown that the differential spectrum of <inline-formula><tex-math id=\"M6\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\mathbb S = \\{\\omega_0 = 2^{2m-1}+2^{2m-3}-1,\\omega_2 = 2^{2m-2}+2^{m-1}, \\omega_4 = 2^{2m-3}-2^{m-1},\\omega_{2^m} = 1\\} $\\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id=\"M8\">\\begin{document}$ m $\\end{document}</tex-math></inline-formula> is even, and <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\mathbb S = \\{\\omega_0 = \\frac{7\\cdot2^{2m-2}+2^m}3, \\omega_2 = 3\\cdot2^{2m-3}-2^{m-2}-1, \\omega_6 = \\frac{2^{2m-3}-2^{m-2}}3, \\omega_{2^m+2} = 1\\} $\\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id=\"M10\">\\begin{document}$ m $\\end{document}</tex-math></inline-formula> is odd.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"115 1","pages":"1468-1475"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2021060","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Let \begin{document}$ m\geq3 $\end{document} be a positive integer and \begin{document}$ n = 2m $\end{document}. Let \begin{document}$ f(x) = x^{2^m+3} $\end{document} be a power permutation over \begin{document}$ {\mathrm {GF}}(2^n) $\end{document}, which is a monomial with a Niho exponent. In this paper, the differential spectrum of \begin{document}$ f $\end{document} is investigated. It is shown that the differential spectrum of \begin{document}$ f $\end{document} is \begin{document}$ \mathbb S = \{\omega_0 = 2^{2m-1}+2^{2m-3}-1,\omega_2 = 2^{2m-2}+2^{m-1}, \omega_4 = 2^{2m-3}-2^{m-1},\omega_{2^m} = 1\} $\end{document} when \begin{document}$ m $\end{document} is even, and \begin{document}$ \mathbb S = \{\omega_0 = \frac{7\cdot2^{2m-2}+2^m}3, \omega_2 = 3\cdot2^{2m-3}-2^{m-2}-1, \omega_6 = \frac{2^{2m-3}-2^{m-2}}3, \omega_{2^m+2} = 1\} $\end{document} when \begin{document}$ m $\end{document} is odd.
Let \begin{document}$ m\geq3 $\end{document} be a positive integer and \begin{document}$ n = 2m $\end{document}. Let \begin{document}$ f(x) = x^{2^m+3} $\end{document} be a power permutation over \begin{document}$ {\mathrm {GF}}(2^n) $\end{document}, which is a monomial with a Niho exponent. In this paper, the differential spectrum of \begin{document}$ f $\end{document} is investigated. It is shown that the differential spectrum of \begin{document}$ f $\end{document} is \begin{document}$ \mathbb S = \{\omega_0 = 2^{2m-1}+2^{2m-3}-1,\omega_2 = 2^{2m-2}+2^{m-1}, \omega_4 = 2^{2m-3}-2^{m-1},\omega_{2^m} = 1\} $\end{document} when \begin{document}$ m $\end{document} is even, and \begin{document}$ \mathbb S = \{\omega_0 = \frac{7\cdot2^{2m-2}+2^m}3, \omega_2 = 3\cdot2^{2m-3}-2^{m-2}-1, \omega_6 = \frac{2^{2m-3}-2^{m-2}}3, \omega_{2^m+2} = 1\} $\end{document} when \begin{document}$ m $\end{document} is odd.
期刊介绍:
Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.
Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.
More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.