Nemanja Milutinovic, S. Čabarkapa, M. Zivkovic, Milos Antonijevic, Djordje Mladenovic, N. Bačanin
{"title":"Tuning Artificial Neural Network for Healthcare 4.0. by Sine Cosine Algorithm","authors":"Nemanja Milutinovic, S. Čabarkapa, M. Zivkovic, Milos Antonijevic, Djordje Mladenovic, N. Bačanin","doi":"10.1109/IDCIoT56793.2023.10053543","DOIUrl":null,"url":null,"abstract":"From 2015 to 2022, healthcare 4.0 has made revolutionary impacts on health services. It includes machine learning (ML), internet of things (IoT), fog computing and cloud computing. The utilization of machine learning approaches supplied by IoT advances employing fog and cloud computing principles improves the performance and accuracy of healthcare models. These concepts bounded together are distinguished in their application with the researchers as they dominate alongside the best results. Inspirited by the mathematical traits of sine and cosine functions, the sine cosine algorithm (SCA) generates numerous initial random candidate solutions with the goal of fluctuation outwards or towards the ideal answer. The metaheuristic algorithm can be applied for optimization of an artificial neural network (ANN) on which the Healthcare 4.0 relies. The solution has been tested on four diverse datasets in this field as well as the results of those tests have been compared to those of other hybrid solutions with the use of same datasets as the suggested solution. The results are in the favor of the novel method, as it obtains general advantage over all tests.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"29 1","pages":"510-513"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
From 2015 to 2022, healthcare 4.0 has made revolutionary impacts on health services. It includes machine learning (ML), internet of things (IoT), fog computing and cloud computing. The utilization of machine learning approaches supplied by IoT advances employing fog and cloud computing principles improves the performance and accuracy of healthcare models. These concepts bounded together are distinguished in their application with the researchers as they dominate alongside the best results. Inspirited by the mathematical traits of sine and cosine functions, the sine cosine algorithm (SCA) generates numerous initial random candidate solutions with the goal of fluctuation outwards or towards the ideal answer. The metaheuristic algorithm can be applied for optimization of an artificial neural network (ANN) on which the Healthcare 4.0 relies. The solution has been tested on four diverse datasets in this field as well as the results of those tests have been compared to those of other hybrid solutions with the use of same datasets as the suggested solution. The results are in the favor of the novel method, as it obtains general advantage over all tests.