High-Precision Visual Localization and Dense Mapping Based on Visual SLAM for Indoor Environment

Zhentao Yu, Tong Zhou, Yan Su
{"title":"High-Precision Visual Localization and Dense Mapping Based on Visual SLAM for Indoor Environment","authors":"Zhentao Yu, Tong Zhou, Yan Su","doi":"10.1109/ICCC47050.2019.9064221","DOIUrl":null,"url":null,"abstract":"Based on the situation of existing methods of indoor visual localization can hardly meet the fast, robust, practical and high-precision localization requirements simultaneously, a high-precision visual localization and dense mapping solution proposed in this paper. The solution possesses the capacity to estimate and optimize the 6-DoF pose and motion trajectory of a camera by adopting three parallel threads: tracking, local mapping and loop closing. Moreover, the method can reconstruct 3D dense map in real time by stitching point cloud module with input RGB-D images. Experiments show the proposed solution achieves excellent performance in terms of pose accuracy (centimeter) and localization speed (30FPS), which satisfies the requirements of indoor robot visual localization and 3D dense mapping with rapidity, preciseness and robustness.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"95 1","pages":"377-381"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the situation of existing methods of indoor visual localization can hardly meet the fast, robust, practical and high-precision localization requirements simultaneously, a high-precision visual localization and dense mapping solution proposed in this paper. The solution possesses the capacity to estimate and optimize the 6-DoF pose and motion trajectory of a camera by adopting three parallel threads: tracking, local mapping and loop closing. Moreover, the method can reconstruct 3D dense map in real time by stitching point cloud module with input RGB-D images. Experiments show the proposed solution achieves excellent performance in terms of pose accuracy (centimeter) and localization speed (30FPS), which satisfies the requirements of indoor robot visual localization and 3D dense mapping with rapidity, preciseness and robustness.
基于视觉SLAM的室内环境高精度视觉定位与密集映射
针对现有室内视觉定位方法难以同时满足快速、鲁棒性、实用性和高精度定位要求的情况,本文提出了一种高精度视觉定位和密集映射的解决方案。该方案采用跟踪、局部映射和闭环三个并行线程,具有估计和优化摄像机六自由度位姿和运动轨迹的能力。此外,该方法通过将点云模块与输入的RGB-D图像拼接,可以实时重建三维密集地图。实验表明,该方法在位姿精度(厘米)和定位速度(30FPS)方面均取得了优异的性能,满足了室内机器人视觉定位和三维密集映射的要求,具有快速、精确和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信