S. Haratian, F. Niessen, F. Grumsen, M. Nancarrow, E. Pereloma, M. Villa, T. Christiansen, M. Somers
{"title":"Strain, Stress and Stress Relaxation in Oxidized Zrcual-Based Bulk Metallic Glass","authors":"S. Haratian, F. Niessen, F. Grumsen, M. Nancarrow, E. Pereloma, M. Villa, T. Christiansen, M. Somers","doi":"10.2139/ssrn.3639770","DOIUrl":null,"url":null,"abstract":"Abstract Surface engineering of Zr51.3Al8.5Cu31.3Ni4Ti4.9 bulk metallic glass (BMG) by gaseous oxidizing below the glass-transition temperature is investigated as a means to introduce compressive residual stress in the surface region. The ZrCuAl-based BMG was exposed to an extremely low oxygen partial pressure of 10−41 bar at 600 K for 60 h. The oxidizing treatment led to the formation of an internal oxidation zone, consisting of finely dispersed nano-crystalline cubic ZrO2 (c-ZrO2), metallic regions inclined with the surface and Cu-hillocks at the surface. The stresses introduced by the volume expansion associated with oxidation were evaluated from i) the lattice strains within c-ZrO2, as determined with an X-ray diffraction (XRD) based method, and ii) strain-relaxation as a response to annular focused ion beam (FIB) milling, as monitored with digital image correlation (DIC). XRD analysis yielded -1.5 GPa (compressive stress) in the nano-crystalline c-ZrO2, while the strain relaxation monitored with FIB-DIC analysis indicated compressive residual stresses of −1.4 GPa in the internal oxidation zone. The strains and stresses determined with the independent measurement methods are discussed. The quantitative macro-strains are discussed in relation to the microstructural features and stress relaxation mechanisms during evolution of the internal oxidation zone.","PeriodicalId":18731,"journal":{"name":"Materials Processing & Manufacturing eJournal","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Processing & Manufacturing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3639770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract Surface engineering of Zr51.3Al8.5Cu31.3Ni4Ti4.9 bulk metallic glass (BMG) by gaseous oxidizing below the glass-transition temperature is investigated as a means to introduce compressive residual stress in the surface region. The ZrCuAl-based BMG was exposed to an extremely low oxygen partial pressure of 10−41 bar at 600 K for 60 h. The oxidizing treatment led to the formation of an internal oxidation zone, consisting of finely dispersed nano-crystalline cubic ZrO2 (c-ZrO2), metallic regions inclined with the surface and Cu-hillocks at the surface. The stresses introduced by the volume expansion associated with oxidation were evaluated from i) the lattice strains within c-ZrO2, as determined with an X-ray diffraction (XRD) based method, and ii) strain-relaxation as a response to annular focused ion beam (FIB) milling, as monitored with digital image correlation (DIC). XRD analysis yielded -1.5 GPa (compressive stress) in the nano-crystalline c-ZrO2, while the strain relaxation monitored with FIB-DIC analysis indicated compressive residual stresses of −1.4 GPa in the internal oxidation zone. The strains and stresses determined with the independent measurement methods are discussed. The quantitative macro-strains are discussed in relation to the microstructural features and stress relaxation mechanisms during evolution of the internal oxidation zone.