Implementasi Metode Backpropagation Neural Network Dalam Memprediksi Hasil Produksi Kedelai

Barorotus Sulusayil Laili, D. Utomo, Denny Wijanarko
{"title":"Implementasi Metode Backpropagation Neural Network Dalam Memprediksi Hasil Produksi Kedelai","authors":"Barorotus Sulusayil Laili, D. Utomo, Denny Wijanarko","doi":"10.25047/jtit.v10i1.145","DOIUrl":null,"url":null,"abstract":"The necessary of soybean in Indonesia tends to increase annually. However, soybean production tends to decrease so that soybean needs does not fullfilled. One of the environmental factors that influence soybean production is climate such as temperature, humidity, sunlight, rainfall, and wind velocity. This study aims to predict soybean production results based on the influence of climate by using an Artificial Neural Network (ANN) method. The algorithm used is Backpropagation with climate and soybean production results in the previous period parameters as input in the prediction process. The results of this study get a training accuracy of 96.6% and testing accuracy of 96.5%.","PeriodicalId":33488,"journal":{"name":"JTIT Jurnal Teknologi Informasi dan Terapan","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JTIT Jurnal Teknologi Informasi dan Terapan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25047/jtit.v10i1.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The necessary of soybean in Indonesia tends to increase annually. However, soybean production tends to decrease so that soybean needs does not fullfilled. One of the environmental factors that influence soybean production is climate such as temperature, humidity, sunlight, rainfall, and wind velocity. This study aims to predict soybean production results based on the influence of climate by using an Artificial Neural Network (ANN) method. The algorithm used is Backpropagation with climate and soybean production results in the previous period parameters as input in the prediction process. The results of this study get a training accuracy of 96.6% and testing accuracy of 96.5%.
神经传播网络对大豆生产结果的预测方法的实施
印尼对大豆的需求呈逐年增加的趋势。然而,大豆产量趋于下降,因此大豆需求无法得到满足。影响大豆生产的环境因素之一是气候,如温度、湿度、阳光、降雨量和风速。本研究旨在利用人工神经网络(ANN)方法对气候影响下的大豆生产结果进行预测。所使用的算法是将前一时期的气候和大豆产量结果参数作为预测过程的输入进行反向传播。本研究的训练准确率为96.6%,测试准确率为96.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
11
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信