Mujie Li, Zezhong Zheng, Mingcang Zhu, Yue He, Jun Xia, Xueye Chen, Q. Peng, Yong He, Xiang Zhang, Pengshan Li
{"title":"The Spatiotemporal Evolution of Urban Impervious Surface for Chengdu, China","authors":"Mujie Li, Zezhong Zheng, Mingcang Zhu, Yue He, Jun Xia, Xueye Chen, Q. Peng, Yong He, Xiang Zhang, Pengshan Li","doi":"10.14358/pers.87.7.491","DOIUrl":null,"url":null,"abstract":"The spatiotemporal evolution of an impervious surface (IS) is significant for urban planning. In this paper, the IS was extracted and its spatiotemporal evolution for the Chengdu urban area was analyzed based on Landsat imagery. Our experimental results indicated that convolutional\n neural networks achieved the better performance with an overall accuracy of 98.32%, Kappa coefficient of 0.98, and Macro F1 of 98.28%, and the farmland was replaced by IS from 2001 to 2017, and the IS area (ISA) increased by 51.24 km2; that is, the growth rate was up to 13.8% in\n sixteen years. According to the landscape metrics, the IS expanded and agglomerated into large patches from small fragmented ones. In addition, the gross domestic product change of the secondary industry was similar to the change of ISA between 2001 and 2017. Thus, the spatiotemporal evolution\n of IS was associated with the economic development of the Chengdu urban area in the past sixteen years.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"67 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/pers.87.7.491","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The spatiotemporal evolution of an impervious surface (IS) is significant for urban planning. In this paper, the IS was extracted and its spatiotemporal evolution for the Chengdu urban area was analyzed based on Landsat imagery. Our experimental results indicated that convolutional
neural networks achieved the better performance with an overall accuracy of 98.32%, Kappa coefficient of 0.98, and Macro F1 of 98.28%, and the farmland was replaced by IS from 2001 to 2017, and the IS area (ISA) increased by 51.24 km2; that is, the growth rate was up to 13.8% in
sixteen years. According to the landscape metrics, the IS expanded and agglomerated into large patches from small fragmented ones. In addition, the gross domestic product change of the secondary industry was similar to the change of ISA between 2001 and 2017. Thus, the spatiotemporal evolution
of IS was associated with the economic development of the Chengdu urban area in the past sixteen years.
期刊介绍:
Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers.
We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.