On boundary value problems for the Boussinesq-type equation with dynamic and non-dynamic boundary conditions

M. Jenaliyev, A. Kassymbekova, M. Yergaliyev, Bekzat Orynbasar
{"title":"On boundary value problems for the Boussinesq-type equation with dynamic and non-dynamic boundary conditions","authors":"M. Jenaliyev, A. Kassymbekova, M. Yergaliyev, Bekzat Orynbasar","doi":"10.31197/atnaa.1215178","DOIUrl":null,"url":null,"abstract":"The work studies boundary value problems with non-dynamic and dynamic boundary conditions for one- and two-dimensional Boussinesq-type equations in domains representing a trapezoid, triangle, \"curvilinear\" trapezoid, \"curvilinear\" triangle, truncated cone, cone, truncated \"curvilinear\" cone, and \"curvilinear\" cone. Combining the methods of the theory of monotone operators and a priori estimates, in Sobolev classes, we have established theorems on the unique weak solvability of the boundary value problems under study.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"85 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1215178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The work studies boundary value problems with non-dynamic and dynamic boundary conditions for one- and two-dimensional Boussinesq-type equations in domains representing a trapezoid, triangle, "curvilinear" trapezoid, "curvilinear" triangle, truncated cone, cone, truncated "curvilinear" cone, and "curvilinear" cone. Combining the methods of the theory of monotone operators and a priori estimates, in Sobolev classes, we have established theorems on the unique weak solvability of the boundary value problems under study.
具有动态和非动态边界条件的boussinesq型方程的边值问题
研究了梯形、三角形、“曲线”梯形、“曲线”三角形、截锥体、截锥体、截“曲线”锥体和“曲线”锥体域内一维和二维boussinesq型方程的非动态边界条件和动态边界条件的边值问题。结合单调算子理论和先验估计的方法,在Sobolev类中,我们建立了所研究的边值问题的唯一弱可解性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信