A Lung-Parenchyma-Contrast Hybrid Network For EGFR Gene Mutation Prediction In Lung Cancer

Meili Liu, Shuo Wang, He Yu, Yongbei Zhu, Liusu Wang, Mingyu Zhang, Zhangjie Wu, Xiaohu Li, Wei-min Li, Jie Tian
{"title":"A Lung-Parenchyma-Contrast Hybrid Network For EGFR Gene Mutation Prediction In Lung Cancer","authors":"Meili Liu, Shuo Wang, He Yu, Yongbei Zhu, Liusu Wang, Mingyu Zhang, Zhangjie Wu, Xiaohu Li, Wei-min Li, Jie Tian","doi":"10.1109/ISBI52829.2022.9761614","DOIUrl":null,"url":null,"abstract":"Epidermal growth factor receptor (EGFR) mutation status is critical for lung cancer treatment planning. Current identification relies on invasive biopsy and expensive gene sequencing. Recent studies revealed that CT images combined with deep learning can be used to non-invasively predict EGFR mutation status. However, how to enable the network to focus on the lung parenchyma area and extract discriminative features needs further exploration. In this study, we proposed a lung-parenchyma-contrast (LPC) hybrid network that: 1) uses a fully automatic whole-lung analysis method and enables the model to focus on the lung parenchyma area; 2) extracts local and global lung parenchyma features by a contrastive learning strategy; and 3) jointly performs feature learning and classifier learning to improve predictive performance. We evaluated our network on a large multi-center dataset (2316 patients), which outperforms (AUC=0.827) the previous state-of-the-art methods. Extensive experiments also demonstrated the effectiveness of the contrastive learning modules.†","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"99 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Epidermal growth factor receptor (EGFR) mutation status is critical for lung cancer treatment planning. Current identification relies on invasive biopsy and expensive gene sequencing. Recent studies revealed that CT images combined with deep learning can be used to non-invasively predict EGFR mutation status. However, how to enable the network to focus on the lung parenchyma area and extract discriminative features needs further exploration. In this study, we proposed a lung-parenchyma-contrast (LPC) hybrid network that: 1) uses a fully automatic whole-lung analysis method and enables the model to focus on the lung parenchyma area; 2) extracts local and global lung parenchyma features by a contrastive learning strategy; and 3) jointly performs feature learning and classifier learning to improve predictive performance. We evaluated our network on a large multi-center dataset (2316 patients), which outperforms (AUC=0.827) the previous state-of-the-art methods. Extensive experiments also demonstrated the effectiveness of the contrastive learning modules.†
肺癌中EGFR基因突变预测的肺-实质-对比杂交网络
表皮生长因子受体(EGFR)突变状态对肺癌治疗计划至关重要。目前的鉴定依赖于侵入性活检和昂贵的基因测序。最近的研究表明,CT图像结合深度学习可用于无创预测EGFR突变状态。然而,如何使网络能够聚焦于肺实质区域,提取有区别的特征,还需要进一步探索。在本研究中,我们提出了一种肺实质对比(lung-parenchyma-contrast, LPC)混合网络:1)采用全自动全肺分析方法,使模型能够专注于肺实质区域;2)采用对比学习策略提取局部和全局肺实质特征;3)联合进行特征学习和分类器学习,提高预测性能。我们在一个大型多中心数据集(2316例患者)上评估了我们的网络,其优于之前最先进的方法(AUC=0.827)。大量的实验也证明了对比学习模块的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信