{"title":"Near-perfect clique-factors in sparse pseudorandom graphs","authors":"Jie Han , Yoshiharu Kohayakawa , Yury Person","doi":"10.1016/j.endm.2018.06.038","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that, for any <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>, there exists a constant <span><math><mi>c</mi><mo>=</mo><mi>c</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> such that any <em>d</em>-regular <em>n</em>-vertex graph with the second largest eigenvalue in absolute value <em>λ</em> satisfying <span><math><mi>λ</mi><mo>≤</mo><mi>c</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>/</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span> contains <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mi>n</mi><mo>/</mo><mi>t</mi></math></span> vertex-disjoint copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. This provides further support for the conjecture of Krivelevich, Sudakov and Szábo [<em>Triangle factors in sparse pseudo-random graphs</em>, Combinatorica <strong>24</strong> (2004), pp. 403–426] that (<span><math><mi>n</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>λ</mi></math></span>)-graphs with <span><math><mi>n</mi><mo>∈</mo><mn>3</mn><mi>N</mi></math></span> and <span><math><mi>λ</mi><mo>≤</mo><mi>c</mi><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for a suitably small absolute constant <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> contain triangle-factors.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.038","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157106531830129X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7
Abstract
We prove that, for any , there exists a constant such that any d-regular n-vertex graph with the second largest eigenvalue in absolute value λ satisfying contains vertex-disjoint copies of . This provides further support for the conjecture of Krivelevich, Sudakov and Szábo [Triangle factors in sparse pseudo-random graphs, Combinatorica 24 (2004), pp. 403–426] that ()-graphs with and for a suitably small absolute constant contain triangle-factors.
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.