A linear discriminant analysis using weighted local structure information

Raywut Ketsuwan, P. Padungweang
{"title":"A linear discriminant analysis using weighted local structure information","authors":"Raywut Ketsuwan, P. Padungweang","doi":"10.1109/JCSSE.2017.8025907","DOIUrl":null,"url":null,"abstract":"The linear discriminant analysis (LDA) is one of the most efficient supervised dimensionality reduction technique widely used in face recognition. This paper proposed a new weighted LDA to improve the performance of the discriminant analysis. Confusable pair of classes is considered as the primary goal in our objective function. The proposed technique not only improves the minimization of the within-class scatter, but also improves the maximization of the between classes scatter to extract better discriminant feature subset. The experimental results a real word dataset demonstrate that the proposed method achieve higher recognition rate than that traditional LDA as well as other weighted LDA.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"4 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2017.8025907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The linear discriminant analysis (LDA) is one of the most efficient supervised dimensionality reduction technique widely used in face recognition. This paper proposed a new weighted LDA to improve the performance of the discriminant analysis. Confusable pair of classes is considered as the primary goal in our objective function. The proposed technique not only improves the minimization of the within-class scatter, but also improves the maximization of the between classes scatter to extract better discriminant feature subset. The experimental results a real word dataset demonstrate that the proposed method achieve higher recognition rate than that traditional LDA as well as other weighted LDA.
基于加权局部结构信息的线性判别分析
线性判别分析(LDA)是目前广泛应用于人脸识别的最有效的监督降维技术之一。为了提高判别分析的性能,本文提出了一种新的加权LDA。在我们的目标函数中,可混淆的类对被认为是主要目标。该方法不仅提高了类内散点的最小化,而且提高了类间散点的最大化,从而提取出更好的判别特征子集。在真实单词数据集上的实验结果表明,该方法比传统LDA和其他加权LDA具有更高的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信