Irregular Product Coded Computation for High-Dimensional Matrix Multiplication

Hyegyeong Park, J. Moon
{"title":"Irregular Product Coded Computation for High-Dimensional Matrix Multiplication","authors":"Hyegyeong Park, J. Moon","doi":"10.1109/ISIT.2019.8849236","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the straggler problem of the high-dimensional matrix multiplication over distributed workers. To tackle this problem, we propose an irregular-product-coded computation, which is a generalized scheme of the standard-product-coded computation proposed in [1]. Introducing the irregularity to the product-coded matrix multiplication, one can further speed up the matrix multiplication, enjoying the low decoding complexity of the product code. The idea behind the irregular product code introduced in [2] is allowing different code rates for the row and column constituent codes of the product code. We provide a latency analysis of the proposed irregular-product-coded computation. In terms of the total execution time, which is defined by a function of the computation time and decoding time, it is shown that the irregular-product-coded scheme outperforms other competing schemes including the replication, MDS-coded and standard-product-coded schemes in a specific regime.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"2 1","pages":"1782-1786"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we consider the straggler problem of the high-dimensional matrix multiplication over distributed workers. To tackle this problem, we propose an irregular-product-coded computation, which is a generalized scheme of the standard-product-coded computation proposed in [1]. Introducing the irregularity to the product-coded matrix multiplication, one can further speed up the matrix multiplication, enjoying the low decoding complexity of the product code. The idea behind the irregular product code introduced in [2] is allowing different code rates for the row and column constituent codes of the product code. We provide a latency analysis of the proposed irregular-product-coded computation. In terms of the total execution time, which is defined by a function of the computation time and decoding time, it is shown that the irregular-product-coded scheme outperforms other competing schemes including the replication, MDS-coded and standard-product-coded schemes in a specific regime.
高维矩阵乘法的不规则积编码计算
本文研究了分布工作者上的高维矩阵乘法的离散问题。为了解决这个问题,我们提出了一种不规则积编码计算,它是[1]中提出的标准积编码计算的推广方案。将不规则性引入积编码矩阵乘法中,可以进一步加快矩阵乘法的速度,享受积编码的低解码复杂度。[2]中引入的不规则产品代码背后的思想是允许产品代码的行和列组成代码的不同代码率。我们提供了提出的不规则产品编码计算的延迟分析。在计算时间和解码时间的函数定义的总执行时间方面,表明不规则产品编码方案优于其他竞争方案,包括复制,mds编码和标准产品编码方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信