{"title":"Keynote Speech 1 From Data to Symbols: A Unified Perspective Through Information Granules","authors":"W. Pedrycz","doi":"10.1109/iske47853.2019.9170441","DOIUrl":null,"url":null,"abstract":"Some of the recent advancements in Artificial Intelligence (AI) fall under the umbrella of industrial developments (which are predominantly driven by numeric data) and explainable AI (XAI). We advocate that in the realization of these two timely pursuits, information granules and Granular Computing play a significant role. First, it is shown that information granularity is of paramount relevance in building linkages between real-world data and symbols commonly encountered in AI processing. Second, we stress that a suitable level of abstraction (specificity of information granularity) becomes essential to support user-oriented framework of design and functioning AI artifacts. In both cases, central to all pursuits is a process of formation of information granules and their prudent characterization. We discuss a comprehensive approach to the development of information granules by means of the principle of justifiable granularity. Here various construction scenarios are discussed including those engaging conditioning and collaborative mechanisms incorporated in the design of information granules. The mechanisms of assessing the quality of granules are presented. In the sequel, we look at the generative and discriminative aspects of information granules supporting their further usage in the formation of granular models. A symbolic manifestation of information granules is put forward and analyzed from the perspective of semantically sound descriptors of data and relationships among data. With this regard, selected aspects of stability and summarization of symbol-oriented information are discussed.","PeriodicalId":6417,"journal":{"name":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","volume":"1 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iske47853.2019.9170441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Some of the recent advancements in Artificial Intelligence (AI) fall under the umbrella of industrial developments (which are predominantly driven by numeric data) and explainable AI (XAI). We advocate that in the realization of these two timely pursuits, information granules and Granular Computing play a significant role. First, it is shown that information granularity is of paramount relevance in building linkages between real-world data and symbols commonly encountered in AI processing. Second, we stress that a suitable level of abstraction (specificity of information granularity) becomes essential to support user-oriented framework of design and functioning AI artifacts. In both cases, central to all pursuits is a process of formation of information granules and their prudent characterization. We discuss a comprehensive approach to the development of information granules by means of the principle of justifiable granularity. Here various construction scenarios are discussed including those engaging conditioning and collaborative mechanisms incorporated in the design of information granules. The mechanisms of assessing the quality of granules are presented. In the sequel, we look at the generative and discriminative aspects of information granules supporting their further usage in the formation of granular models. A symbolic manifestation of information granules is put forward and analyzed from the perspective of semantically sound descriptors of data and relationships among data. With this regard, selected aspects of stability and summarization of symbol-oriented information are discussed.