tlrmvnmvt: Computing High-Dimensional Multivariate Normal and Student- t Probabilities with Low-Rank Methods in R

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jian Cao, M. Genton, D. Keyes, G. Turkiyyah
{"title":"tlrmvnmvt: Computing High-Dimensional Multivariate Normal and Student- t Probabilities with Low-Rank Methods in R","authors":"Jian Cao, M. Genton, D. Keyes, G. Turkiyyah","doi":"10.18637/jss.v101.i04","DOIUrl":null,"url":null,"abstract":"This paper introduces the usage and performance of the R package tlrmvnmvt, aimed at computing high-dimensional multivariate normal and Student-t probabilities. The package implements the tile-low-rank methods with block reordering and the separationof-variable methods with univariate reordering. The performance is compared with two other state-of-the-art R packages, namely the mvtnorm and the TruncatedNormal packages. Our package has the best scalability and is likely to be the only option in thousands of dimensions. However, for applications with high accuracy requirements, the TruncatedNormal package is more suitable. As an application example, we show that the excursion sets of a latent Gaussian random field can be computed with the tlrmvnmvt package without any model approximation and hence, the accuracy of the produced excursion sets is improved.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"188 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v101.i04","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6

Abstract

This paper introduces the usage and performance of the R package tlrmvnmvt, aimed at computing high-dimensional multivariate normal and Student-t probabilities. The package implements the tile-low-rank methods with block reordering and the separationof-variable methods with univariate reordering. The performance is compared with two other state-of-the-art R packages, namely the mvtnorm and the TruncatedNormal packages. Our package has the best scalability and is likely to be the only option in thousands of dimensions. However, for applications with high accuracy requirements, the TruncatedNormal package is more suitable. As an application example, we show that the excursion sets of a latent Gaussian random field can be computed with the tlrmvnmvt package without any model approximation and hence, the accuracy of the produced excursion sets is improved.
用R中的低秩方法计算高维多元正态和学生- t概率
本文介绍了用于计算高维多元正态概率和Student-t概率的R包tlrmvnmvt的使用方法和性能。该包实现了具有块重排序的低秩瓦片方法和具有单变量重排序的分离变量方法。将性能与另外两个最先进的R包(即mvtnorm和TruncatedNormal包)进行比较。我们的包具有最好的可伸缩性,并且可能是数千个维度中唯一的选择。然而,对于精度要求较高的应用,TruncatedNormal包更合适。作为一个应用实例,我们证明了使用tlrmvnmvt包可以在没有任何模型近似的情况下计算潜在高斯随机场的偏移集,从而提高了所产生偏移集的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信