On the pigeonhole and related principles in deep inference and monotone systems

Anupam Das
{"title":"On the pigeonhole and related principles in deep inference and monotone systems","authors":"Anupam Das","doi":"10.1145/2603088.2603164","DOIUrl":null,"url":null,"abstract":"We construct quasipolynomial-size proofs of the propositional pigeonhole principle in the deep inference system KS, addressing an open problem raised in previous works and matching the best known upper bound for the more general class of monotone proofs. We make significant use of monotone formulae computing boolean threshold functions, an idea previously considered in works of Atserias et al. The main construction, monotone proofs witnessing the symmetry of such functions, involves an implementation of merge-sort in the design of proofs in order to tame the structural behaviour of atoms, and so the complexity of normalization. Proof transformations from previous work on atomic flows are then employed to yield appropriate KS proofs. As further results we show that our constructions can be applied to provide quasipolynomial-size KS proofs of the parity principle and the generalized pigeonhole principle. These bounds are inherited for the class of monotone proofs, and we are further able to construct nO(log log n)-size monotone proofs of the weak pigeonhole principle with (1 + ε)n pigeons and n holes for ε = 1/logk n, thereby also improving the best known bounds for monotone proofs.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We construct quasipolynomial-size proofs of the propositional pigeonhole principle in the deep inference system KS, addressing an open problem raised in previous works and matching the best known upper bound for the more general class of monotone proofs. We make significant use of monotone formulae computing boolean threshold functions, an idea previously considered in works of Atserias et al. The main construction, monotone proofs witnessing the symmetry of such functions, involves an implementation of merge-sort in the design of proofs in order to tame the structural behaviour of atoms, and so the complexity of normalization. Proof transformations from previous work on atomic flows are then employed to yield appropriate KS proofs. As further results we show that our constructions can be applied to provide quasipolynomial-size KS proofs of the parity principle and the generalized pigeonhole principle. These bounds are inherited for the class of monotone proofs, and we are further able to construct nO(log log n)-size monotone proofs of the weak pigeonhole principle with (1 + ε)n pigeons and n holes for ε = 1/logk n, thereby also improving the best known bounds for monotone proofs.
论深度推理与单调系统中的鸽子洞及其相关原理
我们在深度推理系统KS中构造了命题鸽子洞原理的拟多项式大小的证明,解决了以前工作中提出的一个开放问题,并匹配了更一般的单调证明类的已知上界。我们大量使用单调公式计算布尔阈值函数,这是Atserias等人之前的作品中考虑的想法。主要结构,单调证明见证了这些函数的对称性,包括在证明设计中实现合并排序,以驯服原子的结构行为,从而降低规范化的复杂性。然后使用先前关于原子流的工作的证明转换来产生适当的KS证明。作为进一步的结果,我们表明我们的构造可以用于提供宇称原理和广义鸽子洞原理的拟多项式大小的KS证明。对于单调证明类,我们继承了这些界,并且我们进一步能够构造具有(1 + ε)n只鸽子和ε = 1/logk n的n个洞的弱鸽子洞原理的nO(log log n)大小的单调证明,从而也改进了已知的单调证明界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信