Optimizing the Configuration of Intelligent Reflecting Surfaces using Deep Learning

C. Sun, Navid Naderializadeh, M. Hashemi
{"title":"Optimizing the Configuration of Intelligent Reflecting Surfaces using Deep Learning","authors":"C. Sun, Navid Naderializadeh, M. Hashemi","doi":"10.1109/GCWkshps52748.2021.9682108","DOIUrl":null,"url":null,"abstract":"We consider a multi-user wireless network, where a single base station intends to communicate with multiple users by means of an intelligent reflecting surface (IRS), and we propose to optimize the IRS configuration using deep learning-based methodologies. In particular, we train a regression deep neural network to predict the communication channel parameters given the IRS configuration vectors. We further re-train this base model using the data of different users in order to maximize a weighted sum-rate objective function. Simulation results demonstrate that our proposed approach is able to optimize the IRS configuration for any unseen test users given their corresponding received signal patterns.","PeriodicalId":6802,"journal":{"name":"2021 IEEE Globecom Workshops (GC Wkshps)","volume":"38 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps52748.2021.9682108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a multi-user wireless network, where a single base station intends to communicate with multiple users by means of an intelligent reflecting surface (IRS), and we propose to optimize the IRS configuration using deep learning-based methodologies. In particular, we train a regression deep neural network to predict the communication channel parameters given the IRS configuration vectors. We further re-train this base model using the data of different users in order to maximize a weighted sum-rate objective function. Simulation results demonstrate that our proposed approach is able to optimize the IRS configuration for any unseen test users given their corresponding received signal patterns.
利用深度学习优化智能反射面的配置
我们考虑了一个多用户无线网络,其中单个基站打算通过智能反射面(IRS)与多个用户通信,我们建议使用基于深度学习的方法优化IRS配置。特别是,我们训练了一个回归深度神经网络来预测给定IRS配置向量的通信信道参数。我们使用不同用户的数据进一步重新训练该基础模型,以最大化加权和率目标函数。仿真结果表明,我们提出的方法能够优化任何未见过的测试用户的IRS配置,给定他们相应的接收信号模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信