{"title":"Optimizing the Configuration of Intelligent Reflecting Surfaces using Deep Learning","authors":"C. Sun, Navid Naderializadeh, M. Hashemi","doi":"10.1109/GCWkshps52748.2021.9682108","DOIUrl":null,"url":null,"abstract":"We consider a multi-user wireless network, where a single base station intends to communicate with multiple users by means of an intelligent reflecting surface (IRS), and we propose to optimize the IRS configuration using deep learning-based methodologies. In particular, we train a regression deep neural network to predict the communication channel parameters given the IRS configuration vectors. We further re-train this base model using the data of different users in order to maximize a weighted sum-rate objective function. Simulation results demonstrate that our proposed approach is able to optimize the IRS configuration for any unseen test users given their corresponding received signal patterns.","PeriodicalId":6802,"journal":{"name":"2021 IEEE Globecom Workshops (GC Wkshps)","volume":"38 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps52748.2021.9682108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a multi-user wireless network, where a single base station intends to communicate with multiple users by means of an intelligent reflecting surface (IRS), and we propose to optimize the IRS configuration using deep learning-based methodologies. In particular, we train a regression deep neural network to predict the communication channel parameters given the IRS configuration vectors. We further re-train this base model using the data of different users in order to maximize a weighted sum-rate objective function. Simulation results demonstrate that our proposed approach is able to optimize the IRS configuration for any unseen test users given their corresponding received signal patterns.