Channel Model for Spiking Neural Networks Inspired by Impulse Radio MIMO Transmission

Y. Katayama
{"title":"Channel Model for Spiking Neural Networks Inspired by Impulse Radio MIMO Transmission","authors":"Y. Katayama","doi":"10.1109/GLOBECOM38437.2019.9013114","DOIUrl":null,"url":null,"abstract":"In analogy with impulse radio counterpart in wireless communication, a channel model for spiking neural networks (SNNs) is proposed. The neuron channel model includes fanout and fanin with weighted sum in axons, synapses, and dendrites. It is based on a wireless channel model with multiple-input-multiple-output (MIMO) air and digital interfaces, but is orders of magnitude scaled down in size and the group velocity of signaling waves for broadcasting and superposition. The neuron channel matrix can flexibly encode weights and delays per synaptic connection to facilitate native processing of temporal SNNs by wave passive propagation dynamics over the physical media.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"66 3 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9013114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In analogy with impulse radio counterpart in wireless communication, a channel model for spiking neural networks (SNNs) is proposed. The neuron channel model includes fanout and fanin with weighted sum in axons, synapses, and dendrites. It is based on a wireless channel model with multiple-input-multiple-output (MIMO) air and digital interfaces, but is orders of magnitude scaled down in size and the group velocity of signaling waves for broadcasting and superposition. The neuron channel matrix can flexibly encode weights and delays per synaptic connection to facilitate native processing of temporal SNNs by wave passive propagation dynamics over the physical media.
基于脉冲无线电MIMO传输的脉冲神经网络信道模型
类比无线通信中的脉冲无线电对应物,提出了一种尖峰神经网络的信道模型。神经元通道模型包括轴突、突触和树突的fanout和fanin加权和。它基于具有多输入多输出(MIMO)空中和数字接口的无线信道模型,但在尺寸和用于广播和叠加的信号波的群速度上缩小了几个数量级。神经元通道矩阵可以灵活地编码每个突触连接的权重和延迟,以促进波在物理介质上的被动传播动力学对时间snn的原生处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信