Spectral decomposition of normal operator in real Hilbert space

IF 0.5 Q3 MATHEMATICS
M. N. Oreshina
{"title":"Spectral decomposition of normal operator in real Hilbert space","authors":"M. N. Oreshina","doi":"10.13108/2017-9-4-85","DOIUrl":null,"url":null,"abstract":"We consider normal unbounded operators acting in a real Hilbert space. The standard approach to solving spectral problems related with such operators is to apply the complexification, which is a passage to a complex space. At that, usually, the final results are to be decomplexified, that is, the reverse passage is needed. However, the decomplexification often turns out to be nontrivial. The aim of the present paper is to extend the classical results of the spectral theory for the case of normal operators acting in a real Hilbert space. We provide two real versions of the spectral theorem for such operators. We construct the functional calculus generated by the real spectral decomposition of a normal operator. We provide examples of using the obtained functional calculus for representing the exponent of a normal operator.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"101 1","pages":"85-96"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-4-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We consider normal unbounded operators acting in a real Hilbert space. The standard approach to solving spectral problems related with such operators is to apply the complexification, which is a passage to a complex space. At that, usually, the final results are to be decomplexified, that is, the reverse passage is needed. However, the decomplexification often turns out to be nontrivial. The aim of the present paper is to extend the classical results of the spectral theory for the case of normal operators acting in a real Hilbert space. We provide two real versions of the spectral theorem for such operators. We construct the functional calculus generated by the real spectral decomposition of a normal operator. We provide examples of using the obtained functional calculus for representing the exponent of a normal operator.
实数Hilbert空间中正规算子的谱分解
我们考虑作用于实希尔伯特空间中的正规无界算子。解决与此类算子相关的谱问题的标准方法是应用复化,这是一个通往复空间的通道。在这种情况下,通常需要对最终结果进行解复化,也就是说,需要进行反向传递。然而,解复化常常是非平凡的。本文的目的是推广谱理论在实希尔伯特空间中正常算子的经典结果。我们为这类算子提供了谱定理的两个实版本。构造了由正规算子的实谱分解生成的泛函演算。我们提供了使用得到的泛函演算来表示普通算子的指数的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信