Study on Enhancement of Adhesion Force and Surface Conductivity of Graphene Oxide Films using Different Solvents

M. Shahat, A. Ghitas, F. El-Hossary, A. El-Rahman, M. Fawey
{"title":"Study on Enhancement of Adhesion Force and Surface Conductivity of Graphene Oxide Films using Different Solvents","authors":"M. Shahat, A. Ghitas, F. El-Hossary, A. El-Rahman, M. Fawey","doi":"10.9734/bpi/rtcams/v1/10890d","DOIUrl":null,"url":null,"abstract":"In this work, the nanotechnology procedure was utilized to improve both the adhesion force and surface properties of graphene oxide (GO) films. GO has been obtained in a powder form by oxidation purified graphite using the modified Hummer’s technique. Different films of GO nanoparticles (NPs) were deposited using several types of solvents distilled water, acetone, ethanol, dimethylformamide (DMF) or ethylene glycol. The examination of structural and optical properties of GO films was studied by XRD and UV–vis absorption spectroscopy. Moreover, electrical properties, surface roughness, contact angle, adhesion force, wetting energy and spreading coefficient were investigated. It was observed that the properties of the prepared films are influenced by the solvent type. The electrical resistivity of films is highly dependent on the solvent type which exhibited the lowest value with distilled water. Furthermore, GO film synthesized with distilled water has the best values of adhesion force and average surface roughness (Ra) 143.4 mN/m and ~ 7.83 µm, respectively. These results are mostly attributed to hydrophilic cites and GO NPs agglomeration in the surface of films and the effects of their size leading to an expansion in the surface roughness.","PeriodicalId":21032,"journal":{"name":"Recent Trends in Chemical and Material Sciences Vol. 1","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Chemical and Material Sciences Vol. 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/bpi/rtcams/v1/10890d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the nanotechnology procedure was utilized to improve both the adhesion force and surface properties of graphene oxide (GO) films. GO has been obtained in a powder form by oxidation purified graphite using the modified Hummer’s technique. Different films of GO nanoparticles (NPs) were deposited using several types of solvents distilled water, acetone, ethanol, dimethylformamide (DMF) or ethylene glycol. The examination of structural and optical properties of GO films was studied by XRD and UV–vis absorption spectroscopy. Moreover, electrical properties, surface roughness, contact angle, adhesion force, wetting energy and spreading coefficient were investigated. It was observed that the properties of the prepared films are influenced by the solvent type. The electrical resistivity of films is highly dependent on the solvent type which exhibited the lowest value with distilled water. Furthermore, GO film synthesized with distilled water has the best values of adhesion force and average surface roughness (Ra) 143.4 mN/m and ~ 7.83 µm, respectively. These results are mostly attributed to hydrophilic cites and GO NPs agglomeration in the surface of films and the effects of their size leading to an expansion in the surface roughness.
不同溶剂增强氧化石墨烯薄膜附着力和表面导电性的研究
在这项工作中,纳米技术被用于提高氧化石墨烯(GO)薄膜的附着力和表面性能。使用改进的悍马技术,氧化纯化石墨得到了粉末形式的氧化石墨烯。采用蒸馏水、丙酮、乙醇、二甲基甲酰胺(DMF)或乙二醇等溶剂制备氧化石墨烯纳米颗粒膜。采用XRD和紫外-可见吸收光谱对氧化石墨烯薄膜的结构和光学性能进行了表征。研究了材料的电学性能、表面粗糙度、接触角、粘附力、润湿能和扩散系数。观察到溶剂类型对薄膜性能的影响。薄膜的电阻率与溶剂类型有很大关系,在蒸馏水中电阻率最低。用蒸馏水合成的氧化石墨烯膜附着力和平均表面粗糙度(Ra)分别为143.4 mN/m和~ 7.83µm。这些结果主要归因于亲水性城市和氧化石墨烯纳米粒子在薄膜表面的聚集,以及它们的尺寸的影响导致表面粗糙度的扩大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信