Deeply Supervised Salient Object Detection with Short Connections

Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, A. Borji, Z. Tu, Philip H. S. Torr
{"title":"Deeply Supervised Salient Object Detection with Short Connections","authors":"Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, A. Borji, Z. Tu, Philip H. S. Torr","doi":"10.1109/CVPR.2017.563","DOIUrl":null,"url":null,"abstract":"Recent progress on saliency detection is substantial, benefiting mostly from the explosive development of Convolutional Neural Networks (CNNs). Semantic segmentation and saliency detection algorithms developed lately have been mostly based on Fully Convolutional Neural Networks (FCNs). There is still a large room for improvement over the generic FCN models that do not explicitly deal with the scale-space problem. Holisitcally-Nested Edge Detector (HED) provides a skip-layer structure with deep supervision for edge and boundary detection, but the performance gain of HED on saliency detection is not obvious. In this paper, we propose a new saliency method by introducing short connections to the skip-layer structures within the HED architecture. Our framework provides rich multi-scale feature maps at each layer, a property that is critically needed to perform segment detection. Our method produces state-of-the-art results on 5 widely tested salient object detection benchmarks, with advantages in terms of efficiency (0.08 seconds per image), effectiveness, and simplicity over the existing algorithms.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"93 1","pages":"5300-5309"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125

Abstract

Recent progress on saliency detection is substantial, benefiting mostly from the explosive development of Convolutional Neural Networks (CNNs). Semantic segmentation and saliency detection algorithms developed lately have been mostly based on Fully Convolutional Neural Networks (FCNs). There is still a large room for improvement over the generic FCN models that do not explicitly deal with the scale-space problem. Holisitcally-Nested Edge Detector (HED) provides a skip-layer structure with deep supervision for edge and boundary detection, but the performance gain of HED on saliency detection is not obvious. In this paper, we propose a new saliency method by introducing short connections to the skip-layer structures within the HED architecture. Our framework provides rich multi-scale feature maps at each layer, a property that is critically needed to perform segment detection. Our method produces state-of-the-art results on 5 widely tested salient object detection benchmarks, with advantages in terms of efficiency (0.08 seconds per image), effectiveness, and simplicity over the existing algorithms.
基于短连接的深度监督显著目标检测
近年来,显著性检测取得了长足的进展,主要得益于卷积神经网络(cnn)的爆炸性发展。近年来发展起来的语义分割和显著性检测算法大多是基于全卷积神经网络的。与没有明确处理尺度空间问题的通用FCN模型相比,仍有很大的改进空间。整体嵌套边缘检测器(HED)为边缘和边界检测提供了一种具有深度监督的跳跃层结构,但其在显著性检测上的性能提升并不明显。在本文中,我们提出了一种新的显著性方法,将短连接引入到HED体系结构中的跨层结构中。我们的框架在每一层都提供了丰富的多尺度特征图,这是执行片段检测所迫切需要的属性。我们的方法在5个广泛测试的显著目标检测基准上产生了最先进的结果,与现有算法相比,在效率(每张图像0.08秒)、有效性和简单性方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信