Regression conditions that characterize free-Poisson and free-Kummer distributions

IF 0.9 4区 数学 Q4 PHYSICS, MATHEMATICAL
Agnieszka Piliszek
{"title":"Regression conditions that characterize free-Poisson and free-Kummer distributions","authors":"Agnieszka Piliszek","doi":"10.1142/s2010326322500198","DOIUrl":null,"url":null,"abstract":"We find the asymptotic spectral distribution of random Kummer matrix. Then we formulate and prove a free analogue of HV independence property, which is known for classical Kummer and Gamma random variables and for Kummer and Wishart matrices. We also prove a related characterization of free-Kummer and free-Poisson (Marchenko–Pastur) non-commutative random variables.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500198","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

Abstract

We find the asymptotic spectral distribution of random Kummer matrix. Then we formulate and prove a free analogue of HV independence property, which is known for classical Kummer and Gamma random variables and for Kummer and Wishart matrices. We also prove a related characterization of free-Kummer and free-Poisson (Marchenko–Pastur) non-commutative random variables.
表征自由泊松分布和自由库默分布的回归条件
给出了随机Kummer矩阵的渐近谱分布。然后,我们给出并证明了经典Kummer和Gamma随机变量以及Kummer和Wishart矩阵中已知的HV无关性质的自由模拟。我们还证明了自由- kummer和自由- poisson (Marchenko-Pastur)非交换随机变量的一个相关表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Matrices-Theory and Applications
Random Matrices-Theory and Applications Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
11.10%
发文量
29
期刊介绍: Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics. Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory. Special issues devoted to single topic of current interest will also be considered and published in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信