Dual quaternion-based osculating circle algorithm for finding intersection curves

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
Vahide Bulut
{"title":"Dual quaternion-based osculating circle algorithm for finding intersection curves","authors":"Vahide Bulut","doi":"10.2478/ausi-2021-0014","DOIUrl":null,"url":null,"abstract":"Abstract The intersection of surfaces is a fundamental process in computational geometry and computer-aided design applications to build and interrogate complex shapes in the computer. This paper presents a novel and simple dual quaternion-based osculating circle DQOC algorithm to find the intersection curve of two regular surfaces based on the osculating circle concept and dual quaternions. Additionally, we expressed the natural equations of the intersection curve. We have also demonstrated the superiority of our method through numerical examples.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"96 1","pages":"303 - 323"},"PeriodicalIF":0.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The intersection of surfaces is a fundamental process in computational geometry and computer-aided design applications to build and interrogate complex shapes in the computer. This paper presents a novel and simple dual quaternion-based osculating circle DQOC algorithm to find the intersection curve of two regular surfaces based on the osculating circle concept and dual quaternions. Additionally, we expressed the natural equations of the intersection curve. We have also demonstrated the superiority of our method through numerical examples.
基于对偶四元数的密切圆算法求交曲线
曲面相交是计算几何和计算机辅助设计应用中的一个基本过程,用于在计算机中构建和查询复杂的形状。基于密切圆概念和对偶四元数,提出了一种新颖、简单的基于对偶四元数的密切圆DQOC算法,求解两个规则曲面的相交曲线。并给出了交点曲线的自然方程。并通过数值算例证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信