P. Giovannelli, M. D. Donato, G. Cernera, A. Santi, G. Galasso, E. D. Zazzo, Flavia Vitale, G. Castoria, A. Migliaccio
{"title":"The dual role of androgen receptor in mesenchymal cells","authors":"P. Giovannelli, M. D. Donato, G. Cernera, A. Santi, G. Galasso, E. D. Zazzo, Flavia Vitale, G. Castoria, A. Migliaccio","doi":"10.14800/RCI.664","DOIUrl":null,"url":null,"abstract":"The androgen receptor (AR) mediates differentiation, proliferation and transformation of target tissues. These processes require a crosstalk between epithelial and stromal cells. Prostate cancer (PCa) represents a major cause of cancer-related mortality in men, and is often associated with deregulation of androgen/AR axis. Clinical and molecular findings have highlighted the role of epithelial AR in PCa progression. In contrast, the functions of AR in mesenchymal cells are still unclear. We previously reported that low androgen concentration (1 pM) triggers interaction of AR with the Src tyrosine kinase and PI3-K, thus driving cell cycle progression in fibroblasts. In contrast, stimulation of fibroblasts and fibrosarcoma cells with physiological (10 nM) androgen concentration leads to interaction of AR with full-length filamin A (FLNa) and does not trigger DNA synthesis. On the basis of these findings, we re-examined the role of androgen/AR axis in fibroblasts and human fibrosarcoma HT1080 cells. Recently, we obtained two original and integrated findings on the decision of mesenchymal cells to undergo reversible quiescence and migrate upon stimulation with 10 nM androgens (Castoria et al. 2011 and 2014). This decision is dependent upon the interaction of AR with FLNa. Once assembled, the bipartite AR/FLNa complex recruits a1-integrin and triggers Rac1 activation, thereby enhancing on the one hand cell motility. On the other, Rac 1 activation triggers its downstream effector DYRK 1B, which phosphorylates Ser10 of p27. Stabilization of p27 and cell quiescence then follow. These results strengthen and extend our studies, adding a new and exciting piece to the complex puzzle of signaling networks activated by androgens in target cells. Our findings might have implications for current approaches to AR-related diseases.","PeriodicalId":20980,"journal":{"name":"Receptors and clinical investigation","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors and clinical investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/RCI.664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The androgen receptor (AR) mediates differentiation, proliferation and transformation of target tissues. These processes require a crosstalk between epithelial and stromal cells. Prostate cancer (PCa) represents a major cause of cancer-related mortality in men, and is often associated with deregulation of androgen/AR axis. Clinical and molecular findings have highlighted the role of epithelial AR in PCa progression. In contrast, the functions of AR in mesenchymal cells are still unclear. We previously reported that low androgen concentration (1 pM) triggers interaction of AR with the Src tyrosine kinase and PI3-K, thus driving cell cycle progression in fibroblasts. In contrast, stimulation of fibroblasts and fibrosarcoma cells with physiological (10 nM) androgen concentration leads to interaction of AR with full-length filamin A (FLNa) and does not trigger DNA synthesis. On the basis of these findings, we re-examined the role of androgen/AR axis in fibroblasts and human fibrosarcoma HT1080 cells. Recently, we obtained two original and integrated findings on the decision of mesenchymal cells to undergo reversible quiescence and migrate upon stimulation with 10 nM androgens (Castoria et al. 2011 and 2014). This decision is dependent upon the interaction of AR with FLNa. Once assembled, the bipartite AR/FLNa complex recruits a1-integrin and triggers Rac1 activation, thereby enhancing on the one hand cell motility. On the other, Rac 1 activation triggers its downstream effector DYRK 1B, which phosphorylates Ser10 of p27. Stabilization of p27 and cell quiescence then follow. These results strengthen and extend our studies, adding a new and exciting piece to the complex puzzle of signaling networks activated by androgens in target cells. Our findings might have implications for current approaches to AR-related diseases.