Statistical Analysis of the Product High-Order Ambiguity Function

A. Scaglione, S. Barbarossa
{"title":"Statistical Analysis of the Product High-Order Ambiguity Function","authors":"A. Scaglione, S. Barbarossa","doi":"10.1109/18.746840","DOIUrl":null,"url":null,"abstract":"The high-order ambiguity function (HAF) was introduced for the estimation of polynomial-phase signals (PPS) embedded in noise. Since the HAF is a nonlinear operator, it suffers from noise-masking effects and from the appearance of undesired cross terms and, possibly, spurious harmonics in the presence of multicomponent (mc) signals. The product HAF (PHAF) was then proposed as a way to improve the performance of the HAF in the presence of noise and to solve the ambiguity problem. In this correspondence we derive a statistical analysis of the PHAF in the presence of additive white Gaussian noise (AWGN) valid for high signal-to-noise ratio (SNR) and a finite number of data samples. The analysis is carried out in detail for single-component PPS but the multicomponent case is also discussed. Error propagation phenomena implicit in the recursive structure of the PHAF-based estimator are explicitly taken into account. The analysis is validated by simulation results for both single- and multicomponent PPSs.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"138 1","pages":"343-356"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.746840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The high-order ambiguity function (HAF) was introduced for the estimation of polynomial-phase signals (PPS) embedded in noise. Since the HAF is a nonlinear operator, it suffers from noise-masking effects and from the appearance of undesired cross terms and, possibly, spurious harmonics in the presence of multicomponent (mc) signals. The product HAF (PHAF) was then proposed as a way to improve the performance of the HAF in the presence of noise and to solve the ambiguity problem. In this correspondence we derive a statistical analysis of the PHAF in the presence of additive white Gaussian noise (AWGN) valid for high signal-to-noise ratio (SNR) and a finite number of data samples. The analysis is carried out in detail for single-component PPS but the multicomponent case is also discussed. Error propagation phenomena implicit in the recursive structure of the PHAF-based estimator are explicitly taken into account. The analysis is validated by simulation results for both single- and multicomponent PPSs.
乘积高阶模糊函数的统计分析
引入高阶模糊函数(HAF)对嵌入噪声中的多项式相位信号进行估计。由于HAF是一个非线性算子,它受到噪声掩蔽效应和不希望出现的交叉项的影响,并且可能在多分量(mc)信号存在时产生伪谐波。然后提出了产品HAF (PHAF),以提高HAF在噪声存在下的性能并解决模糊问题。在此通信中,我们导出了在高信噪比(SNR)和有限数量数据样本存在的加性高斯白噪声(AWGN)下的PHAF的统计分析。对单组分PPS进行了详细的分析,并对多组分PPS进行了讨论。明确考虑了基于相位函数的估计器递归结构中隐含的误差传播现象。通过单组分和多组分pps的仿真结果验证了分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信