M. Doğan, Z. Gündüz, B. K. Kızılduman, Pınar Turan Beyli, Y. Turhan, Serap Doğan, M. E. Diken
{"title":"Thermal stability and rheological properties of PMMA/B2O3 nanocomposites synthesised by melting method","authors":"M. Doğan, Z. Gündüz, B. K. Kızılduman, Pınar Turan Beyli, Y. Turhan, Serap Doğan, M. E. Diken","doi":"10.1080/14658011.2022.2106727","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nano boron oxide (B2O3) was firstly produced from granular B2O3 by ball milling under cryogenic conditions. Then, PMMA/B2O3 nanocomposites were synthesized by melting method and then characterized. Finally, the rheological properties of PMMA/B2O3 nanocomposite were investigated using a high pressure capillary rheometer. Brauner-Emmet-Teller (BET) surface area analysis showed that the surface area of B2O3 increased with cryogenic grinding. Transmission electron microscopy (TEM) images revealed that B2O3 particles were nano-sized. Scanning electron microscopy (SEM) images showed that the morphology changed with the increase of B2O3 amount. The thermal stability of nanocomposites was found to be better than PMMA. PMMA degraded in two steps, while nanocomposites degraded in one step. It was determined that the amount of residue increased with increasing amount of B2O3. Both PMMA and nanocomposites exhibited non-Newtonian shear thinning flow behavior. In addition, rheological data were found to be highly compatible with the Power Law model.","PeriodicalId":20245,"journal":{"name":"Plastics, Rubber and Composites","volume":"14 1","pages":"186 - 196"},"PeriodicalIF":2.1000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastics, Rubber and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14658011.2022.2106727","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Nano boron oxide (B2O3) was firstly produced from granular B2O3 by ball milling under cryogenic conditions. Then, PMMA/B2O3 nanocomposites were synthesized by melting method and then characterized. Finally, the rheological properties of PMMA/B2O3 nanocomposite were investigated using a high pressure capillary rheometer. Brauner-Emmet-Teller (BET) surface area analysis showed that the surface area of B2O3 increased with cryogenic grinding. Transmission electron microscopy (TEM) images revealed that B2O3 particles were nano-sized. Scanning electron microscopy (SEM) images showed that the morphology changed with the increase of B2O3 amount. The thermal stability of nanocomposites was found to be better than PMMA. PMMA degraded in two steps, while nanocomposites degraded in one step. It was determined that the amount of residue increased with increasing amount of B2O3. Both PMMA and nanocomposites exhibited non-Newtonian shear thinning flow behavior. In addition, rheological data were found to be highly compatible with the Power Law model.
期刊介绍:
Plastics, Rubber and Composites: Macromolecular Engineering provides an international forum for the publication of original, peer-reviewed research on the macromolecular engineering of polymeric and related materials and polymer matrix composites. Modern polymer processing is increasingly focused on macromolecular engineering: the manipulation of structure at the molecular scale to control properties and fitness for purpose of the final component. Intimately linked to this are the objectives of predicting properties in the context of an optimised design and of establishing robust processing routes and process control systems allowing the desired properties to be achieved reliably.