Extinction times of multitype continuous-state branching processes

IF 1.5 Q2 PHYSICS, MATHEMATICAL
L. Chaumont, M. Marolleau
{"title":"Extinction times of multitype continuous-state branching processes","authors":"L. Chaumont, M. Marolleau","doi":"10.1214/22-aihp1279","DOIUrl":null,"url":null,"abstract":"A multitype continuous-state branching process (MCSBP) ${\\rm Z}=({\\rm Z}_{t})_{t\\geq 0}$, is a Markov process with values in $[0,\\infty)^{d}$ that satisfies the branching property. Its distribution is characterised by its branching mechanism, that is the data of $d$ Laplace exponents of $\\mathbb{R}^d$-valued spectrally positive L\\'evy processes, each one having $d-1$ increasing components. We give an expression of the probability for a MCSBP to tend to 0 at infinity in term of its branching mechanism. Then we prove that this extinction holds at a finite time if and only if some condition bearing on the branching mechanism holds. This condition extends Grey's condition that is well known for $d=1$. Our arguments bear on elements of fluctuation theory for spectrally positive additive L\\'evy fields recently obtained in \\cite{cma1} and an extension of the Lamperti representation in higher dimension proved in \\cite{cpgub}.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 3

Abstract

A multitype continuous-state branching process (MCSBP) ${\rm Z}=({\rm Z}_{t})_{t\geq 0}$, is a Markov process with values in $[0,\infty)^{d}$ that satisfies the branching property. Its distribution is characterised by its branching mechanism, that is the data of $d$ Laplace exponents of $\mathbb{R}^d$-valued spectrally positive L\'evy processes, each one having $d-1$ increasing components. We give an expression of the probability for a MCSBP to tend to 0 at infinity in term of its branching mechanism. Then we prove that this extinction holds at a finite time if and only if some condition bearing on the branching mechanism holds. This condition extends Grey's condition that is well known for $d=1$. Our arguments bear on elements of fluctuation theory for spectrally positive additive L\'evy fields recently obtained in \cite{cma1} and an extension of the Lamperti representation in higher dimension proved in \cite{cpgub}.
多类型连续状态分支过程的消灭时间
多类型连续状态分支过程(MCSBP) ${\rm Z}=({\rm Z}_{t})_{t\geq 0}$是一个值在$[0,\infty)^{d}$满足分支性质的马尔可夫过程。它的分布以分支机制为特征,即$\mathbb{R}^d$值谱正的l逍遥过程的$d$拉普拉斯指数的数据,每一个都有$d-1$递增分量。我们给出了MCSBP在无穷远处趋于0的概率表达式。然后我们证明,当且仅当分支机制的某些条件成立时,这种灭绝在有限时间内成立。这种情况延伸了格蕾的病情,众所周知的$d=1$。我们的论点涉及到最近在\cite{cma1}中得到的谱正加性lsamvy场的涨落理论的要素和在\cite{cpgub}中证明的高维Lamperti表示的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信