Tewodros A. Beyene, Swarat Chaudhuri, C. Popeea, A. Rybalchenko
{"title":"A constraint-based approach to solving games on infinite graphs","authors":"Tewodros A. Beyene, Swarat Chaudhuri, C. Popeea, A. Rybalchenko","doi":"10.1145/2535838.2535860","DOIUrl":null,"url":null,"abstract":"We present a constraint-based approach to computing winning strategies in two-player graph games over the state space of infinite-state programs. Such games have numerous applications in program verification and synthesis, including the synthesis of infinite-state reactive programs and branching-time verification of infinite-state programs. Our method handles games with winning conditions given by safety, reachability, and general Linear Temporal Logic (LTL) properties. For each property class, we give a deductive proof rule that --- provided a symbolic representation of the game players --- describes a winning strategy for a particular player. Our rules are sound and relatively complete. We show that these rules can be automated by using an off-the-shelf Horn constraint solver that supports existential quantification in clause heads. The practical promise of the rules is demonstrated through several case studies, including a challenging \"Cinderella-Stepmother game\" that allows infinite alternation of discrete and continuous choices by two players, as well as examples derived from prior work on program repair and synthesis.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88
Abstract
We present a constraint-based approach to computing winning strategies in two-player graph games over the state space of infinite-state programs. Such games have numerous applications in program verification and synthesis, including the synthesis of infinite-state reactive programs and branching-time verification of infinite-state programs. Our method handles games with winning conditions given by safety, reachability, and general Linear Temporal Logic (LTL) properties. For each property class, we give a deductive proof rule that --- provided a symbolic representation of the game players --- describes a winning strategy for a particular player. Our rules are sound and relatively complete. We show that these rules can be automated by using an off-the-shelf Horn constraint solver that supports existential quantification in clause heads. The practical promise of the rules is demonstrated through several case studies, including a challenging "Cinderella-Stepmother game" that allows infinite alternation of discrete and continuous choices by two players, as well as examples derived from prior work on program repair and synthesis.