Hot Topic-Aware Retweet Prediction with Masked Self-attentive Model

Renfeng Ma, Xiangkun Hu, Qi Zhang, Xuanjing Huang, Yu-Gang Jiang
{"title":"Hot Topic-Aware Retweet Prediction with Masked Self-attentive Model","authors":"Renfeng Ma, Xiangkun Hu, Qi Zhang, Xuanjing Huang, Yu-Gang Jiang","doi":"10.1145/3331184.3331236","DOIUrl":null,"url":null,"abstract":"Social media users create millions of microblog entries on various topics each day. Retweet behaviour play a crucial role in spreading topics on social media. Retweet prediction task has received considerable attention in recent years. The majority of existing retweet prediction methods are focus on modeling user preference by utilizing various information, such as user profiles, user post history, user following relationships, etc. Yet, the users exposures towards real-time posting from their followees contribute significantly to making retweet predictions, considering that the users may participate into the hot topics discussed by their followees rather than be limited to their previous interests. To make efficient use of hot topics, we propose a novel masked self-attentive model to perform the retweet prediction task by perceiving the hot topics discussed by the users' followees. We incorporate the posting histories of users with external memory and utilize a hierarchical attention mechanism to construct the users' interests. Hence, our model can be jointly hot-topic aware and user interests aware to make a final prediction. Experimental results on a dataset collected from Twitter demonstrated that the proposed method can achieve better performance than state-of-the-art methods.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Social media users create millions of microblog entries on various topics each day. Retweet behaviour play a crucial role in spreading topics on social media. Retweet prediction task has received considerable attention in recent years. The majority of existing retweet prediction methods are focus on modeling user preference by utilizing various information, such as user profiles, user post history, user following relationships, etc. Yet, the users exposures towards real-time posting from their followees contribute significantly to making retweet predictions, considering that the users may participate into the hot topics discussed by their followees rather than be limited to their previous interests. To make efficient use of hot topics, we propose a novel masked self-attentive model to perform the retweet prediction task by perceiving the hot topics discussed by the users' followees. We incorporate the posting histories of users with external memory and utilize a hierarchical attention mechanism to construct the users' interests. Hence, our model can be jointly hot-topic aware and user interests aware to make a final prediction. Experimental results on a dataset collected from Twitter demonstrated that the proposed method can achieve better performance than state-of-the-art methods.
基于屏蔽自关注模型的热话题感知转发预测
社交媒体用户每天就各种话题创建数百万条微博。转发行为在社交媒体上传播话题方面起着至关重要的作用。转发预测任务近年来受到了相当大的关注。现有的转推预测方法大多侧重于利用用户资料、用户帖子历史、用户关注关系等各种信息对用户偏好进行建模。然而,用户对关注者实时发布的内容的接触对转发预测有很大的帮助,因为用户可能会参与到关注者讨论的热点话题中,而不是局限于自己以前的兴趣。为了有效地利用热点话题,我们提出了一种新的掩蔽自关注模型,通过感知用户关注者讨论的热点话题来完成转发预测任务。我们将用户的帖子历史与外部记忆相结合,并利用分层关注机制构建用户的兴趣。因此,我们的模型可以同时感知热点话题和用户兴趣,从而做出最终的预测。从Twitter收集的数据集上的实验结果表明,所提出的方法可以获得比目前最先进的方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信