Torsion models for tensor-triangulated categories: the one-step case

IF 0.6 3区 数学 Q3 MATHEMATICS
Scott Balchin, J. Greenlees, Luca Pol, J. Williamson
{"title":"Torsion models for tensor-triangulated categories: the one-step case","authors":"Scott Balchin, J. Greenlees, Luca Pol, J. Williamson","doi":"10.2140/agt.2022.22.2805","DOIUrl":null,"url":null,"abstract":"Given a suitable stable monoidal model category $\\mathscr{C}$ and a specialization closed subset $V$ of its Balmer spectrum one can produce a Tate square for decomposing objects into the part supported over $V$ and the part supported over $V^c$ spliced with the Tate object. Using this one can show that $\\mathscr{C}$ is Quillen equivalent to a model built from the data of local torsion objects, and the splicing data lies in a rather rich category. As an application, we promote the torsion model for the homotopy category of rational circle-equivariant spectra from [16] to a Quillen equivalence. In addition, a close analysis of the one step case highlights important features needed for general torsion models which we will return to in future work.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"118 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.2805","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Given a suitable stable monoidal model category $\mathscr{C}$ and a specialization closed subset $V$ of its Balmer spectrum one can produce a Tate square for decomposing objects into the part supported over $V$ and the part supported over $V^c$ spliced with the Tate object. Using this one can show that $\mathscr{C}$ is Quillen equivalent to a model built from the data of local torsion objects, and the splicing data lies in a rather rich category. As an application, we promote the torsion model for the homotopy category of rational circle-equivariant spectra from [16] to a Quillen equivalence. In addition, a close analysis of the one step case highlights important features needed for general torsion models which we will return to in future work.
张量三角分类的扭转模型:一步情况
给定一个合适的稳定单轴模型范畴$\mathscr{C}$和它的Balmer谱的一个专门化闭子集$V$,可以得到一个Tate平方,将对象分解为$V$上支持的部分和$V^ C $上支持的与Tate对象拼接的部分。使用它可以表明$\mathscr{C}$是Quillen等价于由局部扭转对象数据构建的模型,并且拼接数据属于相当丰富的类别。作为应用,我们将有理圆等变谱同伦范畴的扭转模型从[16]提升到Quillen等价。此外,对单步情况的仔细分析突出了一般扭转模型所需的重要特征,我们将在未来的工作中回到这些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信