Microstructure and Properties of Laser Additive Manufactured Fe-Cr-Ni-B Steel by Divided-area Process

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhao Yuhui, Wang Zhiguo, Zhao Jibin, Shi Fan
{"title":"Microstructure and Properties of Laser Additive Manufactured Fe-Cr-Ni-B Steel by Divided-area Process","authors":"Zhao Yuhui,&nbsp;Wang Zhiguo,&nbsp;Zhao Jibin,&nbsp;Shi Fan","doi":"10.1016/S1875-5372(18)30183-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presented a fundamental investigation on the formation mechanism and compatibility of microstructure/mechanical property of Fe-Cr-Ni-B steel samples, which were built by the divided-area forming and integral connection methods. Results indicate that the stress at the edge of the specimen produced in additive manufacturing is reduced by the divided-area forming and integral connection method. According to the microstructure analysis using stereology microscopy/optical microscopy/scanning electron microscope/X-ray diffractometer/Schaeffler diagram, the macrostructure is distributed in strip band geometry and the microstructures consist of dendrites with the intermetallic phases containing austenite phase, boride/matrix eutectic phase. Additionally, the macrostructure strips near the bonding line bend to the building direction and are discontinuous because of the unique forming method. However, the microstructures and composition of the samples are homogeneous. Due to the existence of boride and the finer microstructures, mechanical properties analysis shows that the alloy has high hardness, high ultimate strength and bad deformability. The hardness distribution is homogeneous apart from some positions of the re-melting zone and the heat-affected zone near the bonding line, which have a relatively lower hardness because of differences in microstructure.</p></div>","PeriodicalId":21056,"journal":{"name":"稀有金属材料与工程","volume":"47 8","pages":"Pages 2305-2311"},"PeriodicalIF":0.6000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1875-5372(18)30183-8","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"稀有金属材料与工程","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875537218301838","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presented a fundamental investigation on the formation mechanism and compatibility of microstructure/mechanical property of Fe-Cr-Ni-B steel samples, which were built by the divided-area forming and integral connection methods. Results indicate that the stress at the edge of the specimen produced in additive manufacturing is reduced by the divided-area forming and integral connection method. According to the microstructure analysis using stereology microscopy/optical microscopy/scanning electron microscope/X-ray diffractometer/Schaeffler diagram, the macrostructure is distributed in strip band geometry and the microstructures consist of dendrites with the intermetallic phases containing austenite phase, boride/matrix eutectic phase. Additionally, the macrostructure strips near the bonding line bend to the building direction and are discontinuous because of the unique forming method. However, the microstructures and composition of the samples are homogeneous. Due to the existence of boride and the finer microstructures, mechanical properties analysis shows that the alloy has high hardness, high ultimate strength and bad deformability. The hardness distribution is homogeneous apart from some positions of the re-melting zone and the heat-affected zone near the bonding line, which have a relatively lower hardness because of differences in microstructure.

激光增材制备Fe-Cr-Ni-B钢的组织与性能
本文对采用分区成形和整体连接法制备的Fe-Cr-Ni-B钢试样的形成机理和组织性能相容性进行了初步研究。结果表明,采用分区成形和整体连接的方法可以降低增材制造试样边缘的应力。采用体视显微镜、光学显微镜、扫描电镜、x射线衍射仪、谢弗勒图等方法对其微观组织进行分析,发现其宏观组织呈带状分布,微观组织为枝晶,金属间相含奥氏体相、硼化物/基体共晶相。此外,由于独特的成形方法,粘接线附近的宏观组织条向建筑方向弯曲且不连续。然而,样品的显微组织和成分是均匀的。由于硼化物的存在和较细的组织,合金具有较高的硬度、较高的极限强度和较差的变形性能。硬度分布基本均匀,除了再熔区和粘接线附近的热影响区部分位置由于显微组织的差异,硬度相对较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
稀有金属材料与工程
稀有金属材料与工程 工程技术-材料科学:综合
CiteScore
1.30
自引率
57.10%
发文量
17973
审稿时长
4.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信